• Title/Summary/Keyword: Target dynamic model

Search Result 325, Processing Time 0.028 seconds

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

A Study of Optimization of α-β-γ-η Filter for Tracking a High Dynamic Target

  • Pan, Bao-Feng;Njonjo, Anne Wanjiru;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • The tracking filter plays a key role in accurate estimation and prediction of maneuvering the vessel's position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The ${\alpha}-{\beta}-{\gamma}$ filter is one of the special cases of the general solution provided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity, and acceleration for the nth observation, and predicts the next position and velocity. Although found to track a maneuvering target with good accuracy than the constant velocity ${\alpha}-{\beta}$ filter, the ${\alpha}-{\beta}-{\gamma}$ filter does not perform impressively under high maneuvers, such as when the target is undergoing changing accelerations. This study aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The ${\alpha}-{\beta}-{\gamma}$ filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration to improve the filter's performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, ${\alpha}-{\beta}-{\gamma}-{\eta}$ algorithm as compared to the constant acceleration model, ${\alpha}-{\beta}-{\gamma}$ in terms of error reduction and stability of the filter during target maneuver.

Reinforcement Learning-based Dynamic Weapon Assignment to Multi-Caliber Long-Range Artillery Attacks (다종 장사정포 공격에 대한 강화학습 기반의 동적 무기할당)

  • Hyeonho Kim;Jung Hun Kim;Joohoe Kong;Ji Hoon Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.42-52
    • /
    • 2022
  • North Korea continues to upgrade and display its long-range rocket launchers to emphasize its military strength. Recently Republic of Korea kicked off the development of anti-artillery interception system similar to Israel's "Iron Dome", designed to protect against North Korea's arsenal of long-range rockets. The system may not work smoothly without the function assigning interceptors to incoming various-caliber artillery rockets. We view the assignment task as a dynamic weapon target assignment (DWTA) problem. DWTA is a multistage decision process in which decision in a stage affects decision processes and its results in the subsequent stages. We represent the DWTA problem as a Markov decision process (MDP). Distance from Seoul to North Korea's multiple rocket launchers positioned near the border, limits the processing time of the model solver within only a few second. It is impossible to compute the exact optimal solution within the allowed time interval due to the curse of dimensionality inherently in MDP model of practical DWTA problem. We apply two reinforcement-based algorithms to get the approximate solution of the MDP model within the time limit. To check the quality of the approximate solution, we adopt Shoot-Shoot-Look(SSL) policy as a baseline. Simulation results showed that both algorithms provide better solution than the solution from the baseline strategy.

Process Redesign Through Dynamic Modeling (동적 모델링을 통한 업무 재설계)

  • 김희웅;김영걸
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.175-190
    • /
    • 1997
  • Organizational change projects such as Business Process Redisign (BPR) have been perceived to incur high risk due to their high management complexity, enterprise-wide impace, and steep project cost. This research intends to reduce such risk by developing a systematic process redesign methods, called Dynamic Process Modeling (DPM) method. DPM integrates the customer-oriented business process modeling technique with computerized visual simulation technique to promote better understanding of the target process and enable performance simulation of the proposed redesign alternatives prior to actual BPR implementations. For the cusstomer-oriented process modeling, we propose Dynamic-Event Process Chain (Dynamic-EPC) extending from the conceptual customer process model, Event-Process Chain (EPC). We compare DPM with four other implementation-level process modeling methods over eight criteria and demonstrate its effectiveness by applying it to the real-world hospital BPR case.

  • PDF

Development of an Image Segmentation Algorithm using Dynamic Programming for Object ID Marks in Automation Process (동적계획법을 이용한 자동화 공정에서의 제품 ID 마크 자동분할 알고리듬 개발)

  • 유동훈;안인모;김민성;강동중
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.726-733
    • /
    • 2004
  • This paper presents a method to segment object ID(identification) marks on poor quality images under uncontrolled lighting conditions of automated inspection process. The method is based on dynamic programming using multiple templates and normalized gray-level correlation (NGC) method. If the lighting condition is not good and hence, we can not control the image quality, target image to be inspected presents poor quality ID marks and it is not easy to identify and recognize the ID characters. Conventional several methods to segment the interesting ID mark regions fail on the bad quality images. In this paper, we propose a multiple template method, which uses combinational relation of multiple templates from model templates to match several characters of the inspection images. To increase the computation speed to segment the ID mark regions, we introduce the dynamic programming based algorithm. Experimental results using images from real factory automation(FA) environment are presented.

Numerical Simulation of Tsunamis Considering the Characteristics of Propagation in the East Sea (동해 전파특성을 고려한 지진해일 모의)

  • Sohn, Dae-Hee;Choi, Moon-Kyu;Sohn, Il-Soo;Cho, Yon-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.172-176
    • /
    • 2007
  • In this study, the numerical model for simulation of tsunamis is constructed by using the dispersion-correction scheme, 2nd upwind scheme, dynamic linking method, and so forth. The composed numerical model is used to simulate a hitorical tsunami event. The target tsunami event is the 1983 Central East Sea Tsunami. And, the predicted run-up heights of the tsunami at Imwon port are very reasonable compared to available observed data.

  • PDF

Estimation of the Dynamic Load of the Utility in Building by TPA Method (건물 바닥 구조 해석 모드의 튜닝)

  • Jeong, Min-Ki;Kwon, Hyung-O;Kim, Hyo-Beom;Lee, Jeong-Ha;Lee, Sang-Yeop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.441-446
    • /
    • 2008
  • The source transfer receiver model ('Source $\times$ Transfer = Response' model) which is widely used by NVH development process of vehicle/transport/machinery to analyze effectively and manage efficiently the structural dynamic behavior is also applicable to construction structure. If the evaluation assessment of the vibration level does not meet the target level, there are two methods, one is source treatment or replacement and the other is the reduction treatment on the transfer structure. In case of source treatment, it is done by source supplier and so, the latter is more practical method to reduce the vibration level. In this study, in order to get the accurate Transfer FE model(floor structure FE model), Experimental modal analysis of part of floor structure and FEM modal analysis of full floor structure are performed, then updating of FE model is performed after correlation analysis between these two results and finally, the modal model and FRF are compared between FE and Experimental results.

  • PDF

External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target (FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1145-1167
    • /
    • 2016
  • This study presents a new method to computes analytical fragility curves of a structure subject to tsunami waves. The method uses dynamic analysis at each stage of the computation. First, the smooth particle hydrodynamics (SPH) model simulates the propagation of the tsunami waves from shallow water to their impact on the target structure. The advantage of SPH over mesh based methods is its capability to model wave surface interaction when large deformations are involved, such as the impact of water on a structure. Although SPH is computationally more expensive than mesh based method, nowadays the advent of parallel computing on general purpose graphic processing unit overcome this limitation. Then, the impact force is applied to a finite element model of the structure and its dynamic non-linear response is computed. When a data-set of tsunami waves is used analytical fragility curves can be computed. This study proves it is possible to obtain the response of a structure to a tsunami wave using state of the art dynamic models in every stage of the computation at an affordable cost.