• Title/Summary/Keyword: Target decomposition

Search Result 121, Processing Time 0.022 seconds

Modeling and Analysis of Radar Target Signatures in the VHF-Band Using Fast Chirplet Decomposition (고속 Chirplet 분리기법을 이용한 VHF 대역 레이더 표적신호 모델링 및 해석)

  • Park, Ji-hoon;Kim, Si-ho;Chae, Dae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Although radar target signatures(RTS), such as range profiles have played an important role for target recognition in the X-band radar, they would be less effective when a target is designed to have low radar cross section(RCS). Recently, a number of research groups have conducted the studies on the RTS in the VHF-band where such targets can be better detected than in the X-band. However, there is a lack of work carried out on the mathematical description of the VHF-band RTS. In this paper, chirplet decomposition is employed for modeling of the VHF-band RTS and its performance is compared with that of existing scattering center model generally used for the X-band. In addition, the discriminative signal analysis is performed by chirplet parameterization of range profiles from in an ISAR image. Because the chirplet decomposition takes long computation time, its fast form is further proposed for enhanced practicality.

A Study on Maximum Likelihood Method for Multi Target Estimation (다중 목표물 추정을 위한 최대 우도 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In spatial, desired target direction of arrival estimation is to find a incidental signal direction on receive antennas. In this paper, we were an estimation a desired target direction of arrival using maximum likelihood method. Direction of arrival estimation method estimated a desired target calculating the maximum likelihood sensitivity using singular value decomposition above threshold signals among receive signals in maximum likelihood method. Through simulation, we were analysis a performance to compare existing method and proposal method. In direction of arrival estimation, proposed method is effectivity to decrease processing time because it is not doing an eigen decomposition in direction of arrival estimation, and desired target correctly estimated. We showed that proposal method improve more target estimation than general method.

A Study on Aircraft-Target Assignment Problem in Consideration of Deconfliction (최적화와 분할 방법을 이용한 항공기 표적 할당 연구)

  • Lee, Hyuk;Lee, Young Hoon;Kim, Sun Hoon
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • This paper investigates an aircraft-target assignment problem in consideration of deconfliction. The aircraft-target assignment problem is the problem to assign available aircrafts and weapons to targets that should be attacked, where the objective function is to minimize the total expected damage of aircrafts. Deconfliction is the way of dividing airspaces for aircraft flight to ensure the safety while performing the mission. In this paper, mixed integer programming model is suggested, where it considers deconfliction between aircrafts. However, the suggested MIP model is non-linear and limited to get solution for large size problem. The 2-phase decomposition model is suggested for efficiency and computation, where in the first phase target area is divided into sectors for deconfliction and in the second phase aircrafts and weapons are assigned to given targets for minimizing expected damage of aircraft. The proposed decomposition model shows outperforms the model developed for comparison in the computational experiment.

Estimating Characteristic Data of Target Acquisition Systems for Simulation Analysis (모의 분석을 위한 표적 획득 체계의 특성 데이터 산출)

  • Tae Yoon Kim;Sang Woo Han;Seung Man Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Under combat simulation environment when inputting the detection performance data of the real system into the simulated object the given data affects the simulation analysis result. ACQUIRE-Target Task Performance Metric (TTPM)-Target Angular Size (TAS) model is used as a target acquisition model to simulate the detection ability of entities in the main combat simulation tool. This model estimates the decomposition curve of the object sensor and output the detection distance according to the target type. However, it is not easy to apply the performance of the new detection object that the user wants to input to the target acquisition model. Users want to input the detection distance into the target acquisition model, but the target acquisition model requires sensor decomposition curve data according to encounter conditions. In this paper, we propose a method of inversely deriving the sensor decomposition curve data of the target acquisition model by taking the detection distance to the target as an input. Here, the sensor decomposition curve data simultaneously satisfies each detection distance for three types of targets: personnel, ground vehicles, and aircraft. Finally, the detection distance of various reconnaissance equipment is applied to the detection object, and the detection effect according to the reconnaissance equipment is analyzed.

Decision Level Fusion of Multifrequency Polarimetric SAR Data Using Target Decomposition based Features and a Probabilistic Ratio Model (타겟 분해 기반 특징과 확률비 모델을 이용한 다중 주파수 편광 SAR 자료의 결정 수준 융합)

  • Chi, Kwang-Hoon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.89-101
    • /
    • 2007
  • This paper investigates the effects of the fusion of multifrequency (C and L bands) polarimetric SAR data in land-cover classification. NASA JPL AIRSAR C and L bands data were used to supervised classification in an agricultural area to simulate the integration of ALOS PALSAR and Radarsat-2 SAR data to be available. Several scattering features derived from target decomposition based on eigen value/vector analysis were used as input for a support vector machines classifier and then the posteriori probabilities for each frequency SAR data were integrated by applying a probabilistic ratio model as a decision level fusion methodology. From the case study results, L band data had the proper amount of penetration power and showed better classification accuracy improvement (about 22%) over C band data which did not have enough penetration. When all frequency data were fused for the classification, a significant improvement of about 10% in overall classification accuracy was achieved thanks to an increase of discrimination capability for each class, compared with the case of L band Shh data.

Automatic Algorithm for Extracting the Jet Engine Information from Radar Target Signatures of Aircraft Targets (항공기 표적의 레이더 반사 신호에서 제트엔진 정보를 추출하기 위한 자동화 알고리즘)

  • Yang, Woo-Yong;Park, Ji-Hoon;Bae, Jun-Woo;Kang, Seong-Cheol;Kim, Chan-Hong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.690-699
    • /
    • 2014
  • Jet engine modulation(JEM) is a technique used to identify the jet engine type from the radar target signature modulated by periodic rotation of the jet engine mounted on the aircraft target. As a new approach of JEM, this paper proposes an automatic algorithm for extracting the jet engine information. First, the rotation period of the jet engine is yielded from auto-correlation of the JEM signal preprocessed by complex empirical mode decomposition(CEMD). Then, the final blade number is estimated by introducing the DM(Divisor-Multiplier) rule and the 'Scoring' concept into JEM spectral analysis. Application results of the simulated and measured JEM signals demonstrated that the proposed algorithm is effective in accurate and automatic extraction of the jet engine information.

Target Speaker Speech Restoration via Spectral bases Learning (주파수 특성 기저벡터 학습을 통한 특정화자 음성 복원)

  • Park, Sun-Ho;Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • This paper proposes a target speech extraction which restores speech signal of a target speaker form noisy convolutive mixture of speech and an interference source. We assume that the target speaker is known and his/her utterances are available in the training time. Incorporating the additional information extracted from the training utterances into the separation, we combine convolutive blind source separation(CBSS) and non-negative decomposition techniques, e.g., probabilistic latent variable model. The nonnegative decomposition is used to learn a set of bases from the spectrogram of the training utterances, where the bases represent the spectral information corresponding to the target speaker. Based on the learned spectral bases, our method provides two postprocessing steps for CBSS. Channel selection step finds a desirable output channel from CBSS, which dominantly contains the target speech. Reconstruct step recovers the original spectrogram of the target speech from the selected output channel so that the remained interference source and background noise are suppressed. Experimental results show that our method substantially improves the separation results of CBSS and, as a result, successfully recovers the target speech.

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

Estimation of Fermentation State and Metabolic Stoichiometry of Kyuywomyces marxianus (Krupwomyces marxianus의 발효상태 및 대사 양론식 추정)

  • 류두현
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.272-281
    • /
    • 1993
  • State varibles were estimated for fermentations of K. marxianus under various dilution rates and dissolved oxygen concentrations. The number of elementary reaction stoichiometry with fixed coefficients was determined by singular variable decomposition. Stoichiometry with feasible physical meaning was obtained by target factor analysis. States of fermentations were estimated by linear quadratic programming. The process conditions of single cell production to maximize carbon source consumption were suggested.

  • PDF