• Title/Summary/Keyword: Target classification

Search Result 672, Processing Time 0.036 seconds

Discretization of Continuous-Valued Attributes for Classification Learning (분류학습을 위한 연속 애트리뷰트의 이산화 방법에 관한 연구)

  • Lee, Chang-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1541-1549
    • /
    • 1997
  • Many classification algorithms require that training examples contain only discrete values. In order to use these algorithms when some attributes have continuous numeric values, the numeric attributes must be converted into discrete ones. This paper describes a new way of discretizing numeric values using information theory. Our method is context-sensitive in the sense that it takes into account the value of the target attribute. The amount of information each interval gives to the target attribute is measured using Hellinger divergence, and the interval boundaries are decided so that each interval contains as equal amount of information as possible. In order to compare our discretization method with some current discretization methods, several popular classification data sets are selected for experiment. We use back propagation algorithm and ID3 as classification tools to compare the accuracy of our discretization method with that of other methods.

  • PDF

Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification (농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

Feature Extraction and Classification of Target from Jet Engine Modulation Signal Using Frequency Masking (제트 엔진 변조신호에서 주파수 마스킹을 이용한 표적의 특징 추출 및 식별)

  • Kim, Si-Ho;Kim, Chan-Hong;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • This paper deals with the method to classify the aircraft target by analyzing its JEM signal. We propose the method to classify the engine model by analyzing JEM spectrum using the harmonic frequency mask generated from the blade information of jet engine. The proposed method does not need the complicated logic algorithm to find the chopping frequency in each rotor stage and the pre-simulated engine spectrum DB used in the previous methods. In addition, we propose the method to estimate the precise spool rate and it reduces the error in estimating the number of blades or in calculating the harmonic frequency of frequency mask.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Optimal Solution of Classification (Prediction) Problem

  • Mohammad S. Khrisat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.129-133
    • /
    • 2023
  • Classification or prediction problem is how to solve it using a specific feature to obtain the predicted class. A wheat seeds specifications 4 3 classes of seeds will be used in a prediction process. A multi linear regression will be built, and a prediction error ratio will be calculated. To enhance the prediction ratio an ANN model will be built and trained. The obtained results will be examined to show how to make a prediction tool capable to compute a predicted class number very close to the target class number.

The vegetation analysis of Northern region at Jungnang riverside - Between two bridges of Wallgae 1 and Sangdo - (서울시 중랑천 북부구간 하천변 식생과 식물상 분석 - 월계1교에서 상도교 구간을 대상으로 -)

  • Lee, Sanghwa;Lee, Kyunghee;Jeong, Jongcheol
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • After the modern industrial revolution, rivers in cities became covered and disappeared due to the pressure to develop them. Likewise, their function which is to serve as the basis of natural ecology system in the cities began to be damaged. This research demonstrated that there are a total of 268 categories when it comes to the list of plants, including 64 families, 179 genera, 230 species, 36 varieties, and 1 subspecies. When the relative abundance of the plants that were found at the target research site was studied, the secondary survey demonstrated Bromus japonicus 22.97, Artemisia princeps var. orientalis 16.76 and Erigeron annuus 15.69 while third survey demonstrated Digitaria ciliaris 26.78, Ambrosia trifida 16.29 and Aster pilosus 14.31. There were 54 species of naturalized plants that appeared. Analysis demonstrated annual plant 23 classification category (43%), perennial 11 classification category (20%), multi-perennation 17 classification category (31%), woody plant 3 classification category (6%) and others. When the naturalized plants that were found at the target research site were analyzed by the place of origin, North America and EU took up 76%, which accounts for 3/4 of the all the naturalized plants. At the target research site, naturalization degree of 5 pertained to 22 classification category (41%), which was the highest, followed by 19 classification category (35%) with naturalization degree of 3, 8 classification category (15%) with naturalization degree of 2 and 5 classification category (9%) with naturalization degree of 4 in the order mentioned. Flora of Jungnangcheon did not manifest any change compared to 10 years ago. Thus, it is necessary to increase of biodiversity efforts to improve SeoulCity's natural environment and cityscape.

Gunnery Classification Method using Shape Feature of Profile and GMM (Profile 형태 특징과 GMM을 이용한 Gunnery 분류 기법)

  • Kim, Jae-Hyup;Park, Gyu-Hee;Jeong, Jun-Ho;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.16-23
    • /
    • 2011
  • Muzzle flash based on gunnery is the target that has huge energy. So, gunnery target in a long range over xx km is distinguishable in the IR(infrared) images, on the other hand, is not distinguishable in the CCD images. In this paper, we propose the classification method of gunnery targets in a infrared images and in a long range. The energy from gunnery have an effect on varous pixel values in infrared images as a property of infrared image sensor, distance, and atmosphere, etc. For this reason, it is difficult to classify gunnery targets using pixel values in infrared images. In proposed method, we take the profile of pixel values using high performance infrared sensor, and classify gunnery targets using modeling GMM and shape of profile. we experiment on the proposed method with infrared images in the ground and aviation. In experimental result, the proposed method provides about 93% classification rate.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.

Performance Improvement of Radar Target Classification Using UWB Measured Signals (광대역 레이다 측정 신호를 이용한 표적 구분 성능 향상)

  • Lee, Seung-Jae;Lee, Sung-Jun;Choi, In-Sik;Park, Kang-Kuk;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.981-989
    • /
    • 2011
  • In this paper, we performed radar target classification for the five scale models using ultra-wideband measured signal. In order to compare the performance, the 2 GHz(2~4 GHz), 4 GHz(2~6 GHz), and 6 GHz(2~8 GHz) bandwidth were used. Short time Fourier transform(STFT) and continuous wavelet transform(CWT) are used for target feature extraction. Extracted feature vectors are used as input for the multi-layerd perceptron(MLP) neural network classifier. The results show that as the bandwidth is wider, the performance is better.

Defect classification of refrigerant compressor using variance estimation of the transfer function between pressure pulsation and shell acceleration

  • Kim, Yeon-Woo;Jeong, Weui-Bong
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.255-264
    • /
    • 2020
  • This paper deals with a defect classification technique that considers the structural characteristics of a refrigerant compressor. First, the pressure pulsation of the refrigerant flowing in the suction pipe of a normal compressor was measured at the same time as the acceleration of the shell surface, and then the transfer function between the two signals was estimated. Next, the frequency-weighted acceleration signals of the defect classification target compressors were generated using the estimated transfer function. The estimation of the variance of the transfer function is presented to formulate the frequency-weighted acceleration signals. The estimated frequency-weighted accelerations were applied to defect classification using frequency-domain features. Experiments were performed using commercial compressors to verify the technique. The results confirmed that it is possible to perform an effective defect classification of the refrigerant compressor by the shell surface acceleration of the compressor. The proposed method could make it possible to improve the total inspection performance for compressors in a mass-production line.