• Title/Summary/Keyword: Target accuracy

Search Result 1,454, Processing Time 0.03 seconds

Analysis of Importance of Search Altitude Control for Rapid Target Detection of Drones

  • Ha, Il-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.78-83
    • /
    • 2018
  • Rapidity and accuracy are important considerations when a drone is employed in a wide surveillance area to detect a target. They are more important when the scope of application is a search and rescue operation or the monitoring of natural disasters, which may require prompt warnings and response. During the actual operation of a drone, rapidity and accuracy are associated with the change in the altitude of the drone. The aim of this study is to analyze the characteristics of drones at varying altitudes and prove that altitude is a relevant factor in the performance of drones. Herein, the characteristics of the drone at varying altitudes were analyzed through several search simulations. The results suggest that a high-altitude drone is relatively advantageous compared to a low-altitude drone in a probability-based target search, and that the search altitude is also a very important and fundamental factor in target search by drones.

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Effective ToA-Based Indoor Localization Method Considering Accuracy in Wireless Sensor Networks (무선 센서 네트워크 상에서 정확도를 고려한 효과적인 도래시간 기반 무선실내측위방법)

  • Go, Seungryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.640-651
    • /
    • 2016
  • We propose an effective ToA-based localization method considering accuracy in indoor environments. The purpose of the localization system is to estimate the coordinates of the geographic location of target device. In indoor environments, accurately estimating the location of a target device is not easy due to various errors. The accuracy of wireless localization is influenced by NLOS errors. ToA-based localization measures the location of a target device using the distances between a mobile device and three or more base stations. However, each of the NLOS errors along a distance estimated from a target device to a base station is different because of dissimilar obstacles. To accurately estimate the target's location, an optimized localization process is needed in indoor environments. In this paper, effective ToA-based localization method process is proposed for improving accuracy in wireless sensor networks. Performance evaluations are presented, and the experimental localization system results are proved through comparisons of various localization methods with the proposed methods.

The Evaluation of Distance Accuracy and The Test Target Manufacturing of A Terrestrial Laser Scanner (TLS용 테스트 타깃의 개발과 거리측정 정확도 검증)

  • Lee, In-Su;Tcha, Dek-Kie;Suh, Ho-Suhng
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.279-285
    • /
    • 2012
  • Albeit the use of terrestrial 3D laser scanner (TLS) in the parts of landslide monitoring, cultural heritage documentation, civil engineering, urban engineering, etc. is increasing more and more, there is no international standardization regulation about the accuracy evaluation of the geometric element values, target, instrument calibration and test procedures, etc. Accordingly, this study deals with the manufacturing of TLS performance test target and the evaluation of TLS distance measurement and shows its suitability as the test target.

Analysis of Radar Performance Requirements for VTS System Based on IALA Guidelines (IALA 가이드라인에 기반한 VTS 시스템을 위한 레이더 성능 요구사항 분석)

  • Kim, Byung-Doo;Lee, Byung-Gil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.27-29
    • /
    • 2015
  • Based on IALA guidelines, the fundamental requirements of radar system for vessel traffic services are analyzed in this paper. target separation, target position accuracy, target track accuracy of X-band radar and recommended test conditions are analyzed. Also, in order to check if it satisfies the requirement of target position accuracy from IALA guideline, the test is carried out through processing of radar raw image acquired at VTS center.

  • PDF

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

A Tracking System Using Location Prediction and Dynamic Threshold for Minimizing SMS Delivery

  • Lai, Yuan-Cheng;Lin, Jian-Wei;Yeh, Yi-Hsuan;Lai, Ching-Neng;Weng, Hui-Chuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • In this paper, a novel method called location-based delivery (LBD), which combines the short message service (SMS) and global position system (GPS), is proposed, and further, a realistic system for tracking a target's movement is developed. LBD reduces the number of short message transmissions while maintaining the location tracking accuracy within the acceptable range. The proposed approach, LBD, consists of three primary features: Short message format, location prediction, and dynamic threshold. The defined short message format is proprietary. Location prediction is performed by using the current location, moving speed, and bearing of the target to predict its next location. When the distance between the predicted location and the actual location exceeds a certain threshold, the target transmits a short message to the tracker to update its current location. The threshold is dynamically adjusted to maintain the location tracking accuracy and the number of short messages on the basis of the moving speed of the target. The experimental results show that LBD, indeed, outperforms other methods because it satisfactorily maintains the location tracking accuracy with relatively fewer messages.

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

Robust Guidance of Missile Against Maneuvering Target Based on Sliding-Mode Guidance Law (기동표적에 대한 슬라이딩 모드 유도법칙을 이용한 미사일 강인유도)

  • Lee, Jeom-Hyo;Kim, Kyung-Jung;Kim, Eun-Tai;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.122-125
    • /
    • 2002
  • The optimal guidance has advantages of accuracy and economic energy consumption but it is difficult to implement due to its dependence on the target information such as the relative range, the relative velocity and the acceleration of target. This paper uses optimal guidance and sliding-mode guidance to obtain a new guidance method. The suggested method shows robustness against target maneuvers, good dynamic performance, energy saving of missile and terminal accuracy. Its effectiveness is demonstrated by the simulation results.

  • PDF