• Title/Summary/Keyword: Target Signal

Search Result 1,548, Processing Time 0.025 seconds

A Study on the Direction finding of Drones Using Apollonius Circle Technique (Apollonius Circle 기법을 활용한 드론 방향탐지 연구)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2018
  • This paper uses the Apollonius Circle technique to estimate the position of a target that generates a specific signal by using a drone, which is rapidly becoming a rapidly expanding industry. The existing direction finding method is performed through the vehicle on the ground or installed the antenna at a high position to detect the position of the target. However, the conventional direction finding method is difficult to configure the reception environment of the LOS signal, It is difficult. However, the direction finding using the drone is easy to construct and measure the LOS signal receiving environment using the drone flying at high altitude. In this study, we use the 3D 800MHz Path-Loss Model to reconstruct the signal by using the measurement data of the ground direction finding, reconstruct the signal by using the 3-D 800MHz Path-Loss Model, and use the Apollonius Circle method to estimate the position of the target. A simulation was performed to estimate the position of the target. Simulation was performed to determine the target position estimation performance by configuring the ground direction finding and the dron direction finding.

A Study on the Comparision of One-Dimensional Scattering Extraction Algorithms for Radar Target Identification (레이더 표적 구분을 위한 1차원 산란점 추출 기법 알고리즘들의 성능에 관한 비교 연구)

  • Jung, Ho-Ryung;Seo, Dong-Kyu;Kim, Kyung-Tae;Kim, Hyo-Tae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.193-197
    • /
    • 2003
  • Radar target identification can be achieved by using various radar signatures, such as one-dimensional(1-D) range profile, 2-D radar images, and 1-D or 2-D scattering centers on a target. In this letter, five 1-D scattering center extraction methods are discussed - TLS(Total Least Square)-Prony, Fast Root-MUSIC (Multiple Signal Classification), Matrix-Pencil, GEESE(GEneralized Eigenvalues utilizing Signal-subspace Eigenvalues), TLS-ESPRIT(Total Least Squares - Estimation of Signal Parameters via Rotational Invariance Technique), These methods are compared in the context of estimation accuracy as well as a computational efficiency using a noisy data. Finally these methods are applied to the target classification experiment with the measured data in the POSTECH compact range facility.

  • PDF

Manufacture of a Small RTE for Real-Time Extraction of Radar Signal (레이더 신호의 실시간 추출을 위한 소형 레이더 목표 추출기 개발)

  • Sung Tae-Kyung;Kim Dong-Seek;Cho Hyung-Rae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.835-840
    • /
    • 2004
  • Using of small Radar device can not supply the real exercise information of ellipse circumference or CPA, TCPA and the changing of surroundings fur various target information. Therefore, for the above problem, we develop RTE that is able to and of for each information from ARPA Radar which supply analog video signal, trigger bearing and heading pulse from low-cost small Radar device is equiped with general small fishing boat. The small fishing is equipped with small Radar device, so it is able to collect and apply sailing information such as real exercise information and TCPA.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

Association between Object and Sonar Target for Post Analysis of Submarine Engaged Warfare Simulation (잠수함 교전 시뮬레이션의 사후분석을 위한 객체와 소나 표적간의 연관 기법)

  • Kim, Junhyeong;Bae, Keunsung
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a method to generate the object-target identifier mapping information for system performance and effectiveness analysis of submarine engage system and verify the validity of the proposed method through experiments. In the submarine model of the engage simulator, the signal processing algorithm of the actual sonar system is installed. In the target information obtained through the sonar or signal processing process, the actual object information is not known, and the simulator does not provide such information. Therefore, in this study, we generated identifier mapping information for simulation post-analysis by using bearing, range, and speed of the target obtaind from sonar signal processing and the object collected.

GPU-based Acceleration of Particle Filter Signal Processing for Efficient Moving-target Position Estimation (이동 목표물의 효율적인 위치 추정을 위한 파티클 필터 신호 처리의 GPU 기반 가속화)

  • Kim, Seongseop;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.267-275
    • /
    • 2017
  • Time of difference of arrival (TDOA) method using passive sonar sensor array has normally been used to estimate the location of a concealed moving target in underwater environment. Particle filter has been introduced for effective target estimation for non-Gaussian and nonlinear systems. In this paper, we propose a GPU-based acceleration of target position estimation using particle filter and propose efficient embedded system and software architecture. For the TDOA measurement from the passive sonar sensor, we use the generalized cross correlation phase transform (GCC-PHAT) method to obtain the correlation coefficient of the signal using FFT and we try to accelerate the calculation of GCC-PHAT based TDOA measurements using FFT with GPU CUDA. We also propose parallelization method of the target position estimation algorithm using the GPU CUDA to update the state of each particle for the target position estimation using the measured values. The target estimation algorithm was verified using Matlab and implemented using GPU CUDA. Then, we realized the proposed signal processing acceleration system using NVIDIA Jetson TX1 as the target board to analyze in terms of the execution time. The execution time of the algorithm is reduced by 55% to the CPU standalone-operation on the target board. Experiment results show that the proposed architecture is a feasible solution in terms of high-performance and area-efficient architecture.

The efficient IR-UWB Radar System for Reflective Wave Removal in a Short Distance Environments (근거리 환경에서 반사파 제거를 위한 효율적인 IR-UWB Radar 시스템)

  • Kim, Sueng-Woo;Jeong, Won-Ho;Yeo, Bong-Gu;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • In this paper, Kalman filter and RRWA algorithm are used to estimate the accurate target in IR-UWB (Impulse-Radio Ultra Wideband) radar system, which enables accurate location recognition of indoors and outdoors with low cost and low power consumption. In the signal reflected by the target, unnecessary signals exist in addition to the target signal. We have tried to remove unnecessary signals and to derive accurate target signals and improve performance. The location of the targets is estimated in real time with one transmitting antenna and one receiving antenna. The Kalman filter was used to remove the background noise and the RRWA algorithm was used to remove the reflected signal. In this paper, we think that it will be useful to study the accurate distance estimation and tracking in future target estimation.

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.

A Study on the Beam Steering Error Modification method to Adaptive Array System (적응배열 시스템에서 빔 지향 오차 수정기법에 대한 연구)

  • Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • Wireless channel exists interference by multipath a component. Adaptation array antenna that remove this interference a component forms null point about interference signal and maximizes gains about target signal. If target signal and correlative coherent interference signal are received, there is problem that is removed from arrangement output to target signal. And, adaptation array antenna is shortcoming that is sensitive in directivity error. Therefore, in this paper, introduce each existing algorithm to solve directivity error about coherent interference, and proposed beam forming technique that minimize degree of freedom loss and damage because analyzes the problem and reduces coherent interference and directivity error.

  • PDF

The efficient Reflective Wave Removal algorithm based on IR-UWB Radar and Real-time Implementation (IR-UWB Radar에 기반한 효율적인 반사파 제거 알고리즘 및 실시간 구현)

  • Kim, Sueng-Woo;Choi, Hong Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • In this paper we propose three existing reflection removal algorithms and one proposed algorithm to estimate accurate targets in near field using IR-UWB (Impulse-Radio Ultra Wideband) radar. The received signal includes unnecessary reflected wave signals to the target signal. A reflective cancellation algorithm was used to remove unnecessary signals and estimate only the correct target signal. The location of the targets is estimated in real time with one transmitting antenna and one receiving antenna. In order to overcome the disadvantages of the existing three reflection removal algorithms, we propose a new reflection removal algorithm and estimate the most accurate target. Also we used DSP(Digital Signal Processor) to install the external mounting of vehicles. This paper will contribute to the study of the future reflections.