• Title/Summary/Keyword: Target Impedance

Search Result 83, Processing Time 0.026 seconds

Sliding Mode Control of a Robot Manipulator by the Impedance Approach (임피던스 방식에 의한 로보트 매니퓰레이터의 슬라이딩 모드 제어)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.25-32
    • /
    • 1994
  • This paper presents a robust impedance controller design to coordinate a robot manipulator under system uncertainties while regulating external forces. By an impedance approach, the relationship between the motion and external forces is defined. Due to the system uncertainties, two kind of sliding mode control schemes based on the impedance approach are derived to ensure that the manipulator end-effector follows a desired trajectory and the force applied to end effector is regulated according to a target impendance. A stability condition is shown according to a sliding condition. To evaluate the devised control scheme, a numerical example is shown.

  • PDF

Impedance-based damage monitoring of steel column connection: numerical simulation

  • Ho, Duc-Duy;Ngo, Thanh-Mong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • This study has been motivated to evaluate the practicality of numerical simulation of impedance monitoring for damage detection in steel column connection. In order to achieve the objective, the following approaches are implemented. Firstly, the theory of electro-mechanical (E/M) impedance responses and impedance-based damage monitoring method are outlined. Secondly, the feasibility of numerical simulation of impedance monitoring is verified for several pre-published experimental examples on steel beams, cracked aluminum beams, and aluminum round plates. Undamaged and damaged steel and aluminum beams are simulated to compare to experimental impedance responses. An aluminum round plate with PZT patch in center is simulated to investigate sensitive range of impedance responses. Finally, numerical simulation of the impedance-based damage monitoring is performed for a steel column connection in which connection bolts are damaged. From the numerical simulation test, the applicability of the impedance-based monitoring to the target steel column connection can be evaluated.

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node (무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.

Microfluidic chip for characterization of mechanical property of cell by using impedance measurement (임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩)

  • Kim, Dong-Il;Choi, Eun-Pyo;Chio, Sung-Sik;Park, Jung-Yul;Lee, Sang-Ho;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this paper we propose a microfluidic chip that measures the mechanical stiffness of cell membrane using impedance measurement. The microfluidic chip is composed of PDMS channel and a glass substrate with electrode. The proposed device uses patch-clamp technique to capture and deform a target cell and measures impedance of deformed cells. We demonstrated that the impedance increased after the membrane stretched and blocked the channel.

Laser based impedance measurement for pipe corrosion and bolt-loosening detection

  • Yang, Jinyeol;Liu, Peipei;Yang, Suyoung;Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study proposes a laser based impedance measurement system and impedance based pipe corrosion and bolt-loosening monitoring techniques under temperature variations. For impedance measurement, the laser based impedance measurement system is optimized and adopted in this paper. First, a modulated laser beam is radiated to a photodiode, converting the laser beam into an electric signal. Then, the electric signal is applied to a MFC transducer attached on a target structure for ultrasonic excitation. The corresponding impedance signals are measured, re-converted into a laser beam, and radiated back to the other photodiode located in a data interrogator. The transmitted impedance signals are treated with an outlier analysis using generalized extreme value (GEV) statistics to reliably signal off structural damage. Validation of the proposed technique is carried out to detect corrosion and bolt-loosening in lab-scale carbon steel elbow pipes under varying temperatures. It has been demonstrated that the proposed technique has a potential to be used for structural health monitoring (SHM) of pipe structures.

Impedance Calculation of Power Distribution Networks for High-Speed DRAM Module Design (고속DRAM모듈 설계에 대한 전원평면의 임피던스계산)

  • Lee, Dong-Ju;Younggap You
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.49-60
    • /
    • 2002
  • A systematic design approach for Power distribution network (PDN) is presented aiming at applications to DRAM module designs. Three main stages are comprised in this design approach: modeling and simulation of a PDN based on a two-dimensional transmission line structure employing a partial element equivalent circuit (PEEC); verification of the simulation results through comparison to measured values; and design space scanning with PDN parameters. Impedance characteristics for do-coupling capacitors are analyzed to devise an effective way to stabilize power and ground plane Performance within a target level of disturbances. Self-impedance and transfer-impedance are studied in terms of distance between circuit features and the size of do-coupling capacitors. A simple equation has been derived to find the do-coupling capacitance values yielding impedance lower than design target, and thereby reducing the overall computation time. The effectiveness of the design methodology has been demonstrated using a DRAM module with discrete do-coupling capacitors and a strip structure.

Hybrid impedance control for free and contact motion

  • Oh, Yonghwan;Chung, W. K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.448-451
    • /
    • 1995
  • A general task execution with hybrid impedance control method is addressed. The target impedance is expressed in the constraint frame. For the computational simplicity and the robustness improvement, disturbance observer scheme is used. To make stable contact with the environment, the large value of desired inertia gain for the force-controlled subspace is suggested. Numerical examples are given to show the performance of the proposed controller.

  • PDF

Hybrid Damage Detection in Prestressed Concrete Girder Bridges (프리스트레스트 콘크리트 거더교의 하이브리드 손상 검색)

  • Hong, Dong-Soo;Lee, Jung-Mi;Na, Won-Bae;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.669-674
    • /
    • 2007
  • To develop a promising hybrid structural health monitoring (SHM) system, a combined use of structural vibration and electro-mechanical (EM) impedance is proposed. The hybrid SHM system is designed to use vibration characteristics as global index and EM impedance as local index. The proposed health monitoring scheme is implemented into prestressed concrete (PSC) girder bridges for which a series of damage scenarios are designed to simulate various prestress-loss situations at which the target bridges car experience during their service life. The measured experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the occurrence of damage and furthermore to indicate its location.

  • PDF

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.