• Title/Summary/Keyword: Target Adaptive Guidance

Search Result 14, Processing Time 0.023 seconds

Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법)

  • 최진영;좌동경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

Biased PNG for Approximate Target Adaptive Guidance

  • Song chanho;Kim, philsung;Jun byungeul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.2-141
    • /
    • 2001
  • An approximate target adaptive guidance algorithm(TAG) is proposed on the basis of the assumption that angular acceleration of missile to target line-of-sight and start time for TAG can be obtained by IR seeker. The algorithm does not use any target state estimator. Instead, it avoids the problem of determining target attitude by using the observation that the missile using LOS rate guidance is nearly on the collision course in the later point of engagement. Computer simulation results show that the proposed algorithm can effectively perform target adaptive guidance.

  • PDF

Adaptive Nonlinear Guidance Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 비선형 적응 유도기법)

  • 좌동경;최진영;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 2003
  • This paper proposes a new nonlinear adaptive guidance law. Fourth order state equation for integrated guidance and control loop is formulated considering target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. An adaptive nonlinear guidance law is proposed to compensate for the uncertainties In both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation fer unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem of target maneuver and the limited performance of control loop. We provide the stability analyses and demonstrate the effectiveness of our scheme through simulations.

Target Adaptive Guidance Using Near-Zone Information from IR Seeker (근접영역에서의 IR 탐색기 정보를 이용한 표적적응유도)

  • 엄태윤;김필성
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2002
  • A target adaptive guidance(TAG) algorithm is proposed employing the near-zone signal that can be measured from an infrared seeker. The guidance order is composed of a conventional PNG command and an additional command to be calculable from an additional LOS rate between a hot point of target and a required intercept point. The characteristic of the near-zone signal is similar to that of LOS rate that is inversely proportional to the square of time-to-go. Hence the proposed scheme can be applied to real systems with no estimator for time-to-go. From analysis results on the miss distance with perfect missile and perfect seeker, it follows that the proposed TAG algorithm guarantees missile to be ideally guided to the required intercept point. And it is less affected by the TAG start time and a proportional navigation ratio than other TAG schemes using a LOS rate such as a step bias or a ramp bias.

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.

Considerations in Practical Advanced Guidance Law Development (실용적 첨단유도법칙 개발을 위한 고려사항)

  • 조항주
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.96-106
    • /
    • 2002
  • Many modern guided weapon systems employ sophisticated target sensors as well as powerful computing systems. Due to such advanced features, they are required to achieve better guidance accuracy, and at the same time other guidance objectives for better weapon effectiveness and survivability. In this paper, we overview some of the technical considerations in such advanced guidance algorithm development, and briefly look at some related research works. More specifically, we discuss impact angle control, time-varying nature of the guidance system, time-to-go estimation, guidance loop stability, effect of autopilot lag and physical limitations in control variables, parasitic paths in guidance loops, etc. We also briefly look at some advanced concepts such as integrated guidance and control loop design, target adaptive guidance, guidance law development based on dual control concept, and terminal evasive maneuver.

Adaptive intermittent maneuvers for intercept performance improvement of homing missile with passive seeker (수동형 탐색기를 장착한 호우밍 미사일의 요격성능 향상을 위한 적응 단속 기동)

  • Tark, Min-Jea;Ryu, Hyeok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.469-474
    • /
    • 1990
  • The implementation of modern guidance law derived from optimal control theory requires accurate current states of target, for example, position, velocity and acceleration etc. But there is no sensors that measure the target states directly. So they are estimated from measurable data. For atmospheric missile engagement, direct application of the modern guidance laws may result In deterioration of Intercept performance because of poor observability associated with angles only-measurements by passive seeker and homing geometry. In this paper, a trajectory modulation method called "adaptive Intermittent maneuvers" is added to the modern guidance law, so the observability is enhanced and, consequently, improved the intercept performance. The estimation algorithm called "modified gain pseudo-measurement filter" is used for tracking filter. It is assumed that the passive seeker measure the angles between line of sight and Inertial frame. The Monte-Carlo simulation for realistic air-to-air Intercept scenario are conducted to demonstrate the effectiveness of intermittent maneuvers.ermittent maneuvers.

  • PDF

Passive homing performance improvement in the terminal engagement phase (종말단계에서의 수동호밍 성능개선연구)

  • 송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.351-354
    • /
    • 1996
  • A new target adaptive guidance (TAG) algorithm is proposed to engage the aim point formed by adding a bias to the information from an infrared (IR) seeker for improving passive homing guidance effectiveness. The TAG algorithm utilizes an observability enhancing mid-course guidance algorithm to obtain convergent estimates of state variables involved particularly in range channel otherwise unavailable from passive sensors. Simulation results indicate that the TAG algorithm provides improved terminal effectiveness without computational complexities.

  • PDF

Development of Infrared Thermal Image Target Simulator System (적외선 열상표적 모사장치 개발)

  • 김병문;심장섭;정순기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • This paper describes modeling, design and performance test results of infrared thermal image target system which can generate infrared thermal image on aircraft. The system is designed to control image shape and intensity so that the infrared image shape and its emitting intensity are so similar to that of real aircraft. When applying the technique suggested in this paper, the system consumes only small electric power energy about 30(㎾) to generate infrared thermal image which is equivalent to that of real aircraft under full power operation. After verifying performance test, the system developed here has been used as a target for korean potable surface to air missile(KPSAM) at the stage of evaluation test such as target adaptive guidance test and auto-pilot logic test.

  • PDF

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.