• 제목/요약/키워드: TaqMan PCR

검색결과 80건 처리시간 0.019초

Comparison of Seven Commercial TaqMan Master Mixes and Two Real-Time PCR Platforms Regarding the Rapid Detection of Porcine DNA

  • Kang, Soo Ji;Jang, Chan Song;Son, Ji Min;Hong, Kwang Won
    • 한국축산식품학회지
    • /
    • 제41권1호
    • /
    • pp.85-94
    • /
    • 2021
  • A pig-specific real-time PCR assay based on the mitochondrial ND5 gene was developed to detect porcine material in food and other products. To optimize the performance of assay, seven commercial TaqMan master mixes and two real-time PCR platforms (Applied Biosystems StepOnePlus and Bio-rad CFX Connect) were used to evaluate the limit of detection (LOD) as well as the PCR efficiency and specificity. The LODs and PCR efficiencies for the seven master mixes on two platforms were 0.5-5 pg/reaction and 84.96%-108.80%, respectively. Additionally, non-specific amplifications of DNA from other animal samples (human, dog, cow, and chicken) were observed for four master mixes. These results imply that the sensitivity and specificity of a real-time PCR assay may vary depending on master mix and platform used. The best combination of master mix and real-time PCR platform can accurately detect 0.5 pg porcine DNA, with a PCR efficiency of 100.49%.

Comparative Expression of Stress Related Genes in Response to Salt-stressed Aspen by Real-time RT-PCR

  • Ku, Ja-Jung;Kim, Yong-Yul
    • 한국자원식물학회지
    • /
    • 제21권3호
    • /
    • pp.210-215
    • /
    • 2008
  • Gene-expression analysis is increasingly important in biological research, with real-time reverse PCR (RTPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. However, this technique requires important preliminary work for standardizing and optimizing the many parameters involved in the analysis. Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive and reproducible measurements for specific mRNA sequence. Several genes are regulated in response to abitoic stresses, such as salinity, and their gene products function in stress response and tolerance. The design of the primers and TaqMan probes for real-time PCR assays were carried out using the Primer $Express^{TM}$ software 3.0. The PCR efficiency was estimated through the linear regression of the dilution curve. To understand the expression pattern of various genes under salt stressed condition, we have developed a unique public resource of 9 stress-related genes in poplar. In this study, real-time RT-PCR was used to quantify the transcript level of 10 genes (9 stress-related genes and 1 house keeping gene) that could play a role in adaptation of Populus davidiana. Real-time RT-PCR analyses exhibited different expression ratios of related genes. The data obtained showed that determination of mRNA levels could constitute a new approach to study the stress response of P. davidiana after adaptation during growth in salinity condition.

갯벌 퇴적물내 병원성 Vibrio vulnificus의 신속하고 특이적인 검출 (Rapid and Specific Detection of Virulent V. vulnificus in Tidal Flat Sediments)

  • 변기득;이정현;이계준;김상진
    • 미생물학회지
    • /
    • 제41권3호
    • /
    • pp.168-176
    • /
    • 2005
  • 갯벌 퇴적물에 존재하는 병원성 해양미생물인 Vibrio vulnificus를 신속하고 정확하게 검출하기 위해 PCR, Southern hybridization 방법과 real-time PCR을 수행하여 검출 민감도를 비교하였다. 갯벌 퇴적물로부터 bead beater를 이용한 물리적 방법으로 DNA 조추출액을 얻고 상용화된 키트 (Geneclean turbo Kit)를 이용하여 부식물질(humic substances)을 제거하였다. 병원성에 관련된 3 종의 유전자(hemolysin, vvhA; phosphomannomutase, pmm; metalloprotease, vvpE)를 대상으로 설계한 프라이머 셋을 동시에 사용하는 multiplex PCR 방법과 Southern hybridization과 병행한 방법(PCR/Southern hybridization)을 수행하였다. Real-time PCR은 hemolysin 유전자(vvhA)에 특이한 프라이머와 TaqMan 탐침을 사용하였다. 전처리하지 않은 갯벌 퇴적물의 경우, PCR/Sourthern hybridization과 real-time PCR 방법의 검출 민감도는 퇴적물 1 g 당 약 $10^2$ 개의 세포 수준이었다. 농후처리액(APW; alkaline peptone water)으로 $35^{\circ}C$에서 $2{\~}3$시간, 8시간 중균 배양할 경우 갯벌 퇴적물 1 g 당 $2{\~}10$개 세포가 존재할 때 PCR/Southern hybridization 방법과 real-time PCR 방법으로 각각 검출할 수 있었다. 전처리 과정을 포함하여 real-time PCR은 $6{\~}7$시간, PCR/Sourthern hybridization은 약 36시간이 소요되었다.

소, 돼지, 가금육류의 신속한 동정을 위한 TaqMan probe를 이용한 real-time PCR 개발 (Development of TaqMan probe-based real-time PCR for rapid identification of beef, pork and poultry meat)

  • 고바라다;김지연;나호명;박성도;김용환
    • 한국동물위생학회지
    • /
    • 제35권3호
    • /
    • pp.215-222
    • /
    • 2012
  • Species-specific $TaqMan^{(R)}$ probe-based real-time PCR assays were developed for detection of beef, pork, chicken, duck, goose and turkey. The primer and probe sets used in this study were designed to be complementary to fibroblast growth factor (FGF) for cattle and pig, mitochondrial NADH dehydrogenase (ND) subunit 3 and ND2 for chicken and duck, 12S rRNA for goose and turkey, respectively. As internal positive control we used conserved region in the ribosomal 18S RNA gene to ensure the accuracy of the detection of target DNA by real-time PCR. We confirmed that real-time PCR assays with the primer and probe sets were positive for cattle, pig and chicken intended target animal species with no cross-reactivity with other non-target animal species. Only >50 ng DNA of beef show cross-reactivity in the determination of duck. Using species-specific primer and probe sets, it was possible to detect amounts of 0.1 ng DNA of cattle and pig, 1.0 pg DNA of chicken, duck and turkey, and 0.1 pg DNA of goose for raw samples, respectively. The detection limits were 0.1 ng DNA of cattle, 1.0 ng DNA of pig and 1.0 pg DNA of chicken for DNA mixtures (beef, pork and chicken) extracted from heat-treated ($121^{\circ}C$/5 min) meat samples. In conclusion, it can be suggested that the $TaqMan^{(R)}$ probe-based assay developed in this study might be a rapid and specific method for the identification of meat species in raw or cooked meat products.

Quantification of Genetically Modified Canola GT73 Using TaqMan Real-Time PCR

  • Kim, Jae-Hwan;Song, Hee-Sung;Kim, Dong-Hern;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1778-1783
    • /
    • 2006
  • Event-specific PCR detection methods are the primary trend in genetically modified (GM) plant detection owing to their high specificity based on the flanking sequence of the exogenous integrant. Therefore, this study describes a real-time PCR system for event-specific GM canola GT73, consisting of a set of primers, TaqMan probe, and single target standard plasmid. For the specific detection of GT73 canola, the 3'-integration junction sequence between the host plant DNA and the integrated specific border was targeted. To validate the proposed method, test samples of 0, 1, 3, 5, and 10% GT73 canola were quantified. The method was also assayed with 15 different plants, and no amplification signal was observed in a real-time PCR assay with any of the species tested, other than GT73 canola.

Monitoring of Benzimidazole Resistance in Botrytis cinerea Isolates from Strawberry in Korea and Development of Detection Method for Benzimidazole Resistance

  • Geonwoo Kim;Doeun Son;Sungyu Choi;Haifeng Liu;Youngju Nam;Hyunkyu Sang
    • The Plant Pathology Journal
    • /
    • 제39권6호
    • /
    • pp.614-624
    • /
    • 2023
  • Botrytis cinerea is a major fungal plant pathogen that causes gray mold disease in strawberries, leading to a decrease in strawberry yield. While benzimidazole is widely used as a fungicide for controlling this disease, the increasing prevalence of resistant populations to this fungicide undermines its effectiveness. To investigate benzimidazole resistant B. cinerea in South Korea, 78 strains were isolated from strawberries grown in 78 different farms in 2022, and their EC50 values for benzimidazole were examined. As a result, 64 strains exhibited resistance to benzimidazole, and experimental tests using detached strawberry leaves and the plants in a greenhouse confirmed the reduced efficacy of benzimidazole to control these strains. The benzimidazole resistant strains identified in this study possessed two types of mutations, E198A or E198V, in the TUB2 gene. To detect these mutations, TaqMan probes were designed, enabling rapid identification of benzimidazole resistant B. cinerea in strawberry and tomato farms. This study utilizes TaqMan real-time polymerase chain reaction analysis to swiftly identify benzimidazole resistant B. cinerea, thereby offering the possibility of effective disease management by identifying optimum locations and time of application.

Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Cho, Shin-Hyeong;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제56권5호
    • /
    • pp.419-427
    • /
    • 2018
  • This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, $FAM^{TM}$, $HEX^{TM}$, $Cy5^{TM}$, and CAL Fluor $Red^{(R)}$ 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was $2{\times}10$ copies for C. parvum and for C. cayetanensis, while it was $2{\times}10^3$ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.

Development of a real-time PCR method for detection and quantification of the parasitic protozoan Perkinsus olseni

  • Gajamange, Dinesh;Yoon, Jong-Man;Park, Kyung-Il
    • 한국패류학회지
    • /
    • 제27권4호
    • /
    • pp.387-393
    • /
    • 2011
  • The objective of this study was to develop a real-time PCR method for the rapid detection and quantification of the protozoan pathogen Perkinsus olseni using a TaqMan probe. For the standard, genomic DNA was extracted from $10^5$ in vitro-cultured P. olseni trophozoites, and then 10-fold serial dilutions to the level of a single cell were prepared. To test the reliability of the technique, triplicates of genomic DNA were extracted from $5{\times}10^4$ cells and 10-fold serial dilutions to the level of 5 cells were prepared. The standards and samples were analyzed in duplicate using an $Exicycler^{TM}$ 96 real-time quantitative thermal block. For quantification, the threshold cycle ($C_T$) values of samples were compared with those obtained from standard dilutions. There was a strong linear relationship between the $C_T$ value and the log concentration of cells in the standard ($r^2$ = 0.996). Detection of DNA at a concentration as low as the equivalent of a single cell showed that the assay was sensitive enough to detect a single cell of P. olseni. The estimated number of P. olseni cells was similar to the original cell concentrations, indicating the reliability of P. olseni quantification by real-time PCR. Accordingly, the designed primers and probe may be used for the rapid detection and quantification of P. olseni from clam tissue, environmental water, and sediment samples.

타액내 구강질환 원인 균의 세균배양법, SYBR green qPCR법, MRT-PCR법 간의 정량분석 (Quantitative analysis of oral disease-causing bacteria in saliva among bacterial culture, SYBRgreen qPCR and MRT-PCR method)

  • 박용덕;오혜영;박복리;조아라;김동기;장종화
    • 한국치위생학회지
    • /
    • 제17권2호
    • /
    • pp.319-330
    • /
    • 2017
  • Objectives: The purpose of this study was to compare SYBR Green qPCR, TaqMan, and bacterial selective medium cultures for accurate quantitative analysis of oral microorganisms. Methods: The SYBR Green method is widely used to analyze the total amount of oral microorganisms in oral saliva. However, in this study, MTR-PCR method based on TaqMan method was performed using newly developed primers and probes. In addition, it was designed to confirm the detection agreement of bacteria among bacteria detection method. Results: As a result of MRT-PCR and SYBR Green qPCR analysis, more than 40 times (0.9-362.9 times) bacterium was detected by MRT-PCR. In addition, more bacteria were detected in saliva in the order of MRT-PCR, SYBR Green qPCR, and bacterium culture, and the results of MRB-PCR and SYBR Green qPCR showed the highest agreement. The agreement between the three methods for detecting P. intermedia was similar between 71.4 and 88.6%, but the agreement between MRT-PCR and SYBR Green qPCR was 80% for S. mutans. Among them, the number of total bacteria, P. intermedia and S. mutans bacteria in saliva was higher than that of SYBR Green qPCR method, and bacterium culture method by MRT-PCR method. P. intermedia and S. mutans in saliva were detected by MRT-PCR and MRT-PCR in 88.6% of cases, followed by the SYBR Green qPCR method (80.0%). Conclusions: The SYBR Green qPCR method is the same molecular biology method, but it can not analyze the germs at the same time. Bacterial culturing takes a lot of time if there is no selective culture medium. Therefore, the MRT-PCR method using newly developed primers and probes is considered to be the best method.

A TaqMan Real-Time PCR Assay for Quantifying Type III Hepatopancreatic Parvovirus Infections in Wild Broodstocks and Hatchery-Reared Postlarvae of Fenneropenaeus chinensis in Korea

  • Jang, In-Kwon;Suriakala, Kannan;Kim, Jong-Sheek;Meng, Xian-Hong;Choi, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1109-1115
    • /
    • 2011
  • A highly sensitive and specific TaqMan real-time PCR was used to quantify hepatopancreatic parvovirus (HPV) type III infections in wild broodstocks and hatchery-reared postlarvae (PL) of Fenneropenaeus chinensis. Totals of 159 and 162 wild brooders from three locations were captured, and 140 and 180 PL were obtained from seven and six commercial hatcheries in 2007 and 2008, respectively. Among the three wild broodstock groups from 2007, only 1 group showed HPV infection and 3.2% of 159 brooders were positive for HPV infection. In 2008, HPV infections were observed from all three wild broodstock groups with $1.93{\times}10^4$ copies/mg tissue of pleopods. Of 162 brooders, 26.6% were positive for HPV infection. No PL from the two hatcheries collected in 2007 showed HPV infection, and PL from the rest of the five hatcheries had up to $1.74{\times}10^6$ copies/ng of DNA, and PL from three hatcheries showed HPV infections with over 1,000 copies/ng of DNA. The PL from all seven hatcheries collected in 2008 showed up to $2.10{\times}10^5$ HPV copies/ng of DNA. PL from two hatcheries showed less than 100 copies/ng of DNA, but PL from the rest of the hatcheries showed HPV infections with over 1,000 copies/ng of DNA. These results show that HPV type III is widely distributed in Korea in addition to previously reported HPV type I, and they can be effectively detected by type-specific realtime PCR.