• Title/Summary/Keyword: Taper ratio

Search Result 122, Processing Time 0.022 seconds

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

An Ultra Wideband Printed Monopole Antenna Using Modified Ground Plane (변형된 접지면을 이용한 초광대역 프린티드 모노폴 안테나)

  • Kim Myoung-Bum;Jung Jong-Ho;Park Ikmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.260-269
    • /
    • 2005
  • In this paper, we propose a microstrip line fed printed monopole antenna which has an ultra-wideband characteristic. Proposed antenna can improve the bandwidth characteristic with the taper structure formed by modified ground plane and radiating element. Measured impedance bandwidth ratio of the antenna is more than 30:1; from the lower frequency of 0.89 GHz to the upper frequency of more than 30 GHz for VSRW$\leq$2. The antenna has conical radiation pattern that has low radiation gain to $\theta$=0$^{\circ}$ direction and higher radiation gains as $\theta$ increases.

Surface Reaction of Ru Thin Films Etched in CF 4/O2 Gas Chemistry (CF4/O2 Gas Chemistry에 의해 식각된 Ru 박막의 표면 반응)

  • 임규태;김동표;김경태;김창일;최장현;송준태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1016-1020
    • /
    • 2002
  • Ru thin films were etched using CF/$_4$O$_2$ plasma in an ICP (inductively coupled plasma etching) system. The maximum etch rate of Ru thin films was 168 nm/min at a CF$_4$/O$_2$ gas mixing ratio of 10 %. The selectivity of SiO$_2$ over Ru was 1.3. From the OES (optical emission spectroscopy) analysis, the optical emission intensity of the O radical had a maximum value at 10% CF$_4$ gas concentration and drcrease with further addition of CF4 gas, but etch slope was enhanced. From XPS (x-ray photoelectron spectroscopy) analysis, the surface of the etched Ru thin film in CF$_4$/O$_2$ chemistry shows Ru-F bonds by the chemical reaction of Ru and F. RuF$_{x}$ compounds were suggested as a surface passivation layer that reduces the chemical reactions between Ru and O radicals. From a FE-SEM (field emission scanning electron microscope) micrograph, we had an almost perpendicular taper angle of 89$^{\circ}$.>.

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks

  • Lee, Jung Woo;Lee, Jung Youn
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • This paper proposes a transfer matrix method for the bending vibration of two types of tapered beams subjected to axial force, and it is applied to analyze tapered beams with an edge or multiple edge open cracks. One beam type is assumed to be reduced linearly in the cross-section height along the beam length. The other type is a tapered beam in which the cross-section height and width with the same taper ratio is linearly reduced simultaneously. Each crack is modeled as two sub-elements connected by a rotational spring, and the method can evaluate the effect of cracking on the desired number of eigenfrequencies using a minimum number of subdivisions. Among the power series available for the solutions, the roots of the differential equation are computed using the Frobenius method. The computed results confirm the accuracy of the method and are compared with previously reported results. The effectiveness of the proposed methods is demonstrated by examining specific examples, and the effects of cracking and axial loading are carefully examined by a comparison of the single and double tapered beam results.

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change (Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구)

  • Hwang, Jun Hwan;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

Influence of plugger penetration depth on the area of the canal space occupied by gutta-percha (Plugger 삽입깊이가 근관내 gutta-percha 점유면적에 미치는 영향)

  • Lee, Young-Mi;So, Ho-Young;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.66-71
    • /
    • 2006
  • To evaluate the ratio of gutta-percha area in the canal after canal obturation with Continuous Wave of Condensation Technique (CWCT) with varying depths of plugger penetration, forty root canals of extracted human teeth were prepared up to size 40 of 0.06 taper with $ProFile^{(R)}$. Canals of three groups were filled with CWCT with System $B^{TM}$ (Analytic Tech. , USA) and different plugger penetration depths of 3, 5, or 7 mm from the apex. Canals of one group were filled with lateral condensation technique as a control The felled teeth were cross-sectioned at 1, 2 and 3 mm levels from the apical foramen. The ratio of gutta-percha area in the canal was analyzed using $Auto^{(R)}$ Cad 2000. Data were analyzed with one-way ANOVA and Duncan's multiple range test. At all levels, higher gutta-percha area ratio was found with deeper plugger penetration depth in CWCT, and cold lateral condensation group showed higher ratio than group of plugger penetration to apical 7 mm in CWCT. At apical 1 mm and 2 mm levels, group of plugger penetration to apical 3 mm showed significantly high or gutta-percha area ratio than those of apical 7 mm and lateral condensation (p<0.05). It is concluded therefore that, under the conditions of the present study, deeper plugger penetration depth results in more favorable and efficient obturation in CWCT.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Scanning Electron Microscopic Study of Scales Surrounding the Surface of Newborn Hair (신생아 모발 표면을 둘러싸고 있는 비늘에 관한 주사전자현미경적 연구)

  • Jung, Hee Joong;Jin, Hyun Sook;Jang, A Young;Jang, Eun Joo;Chang, Byung Soo;Kim, Kyung Sook
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.216-223
    • /
    • 2020
  • We investigated the morphology of the scalp hair shaft from the base to the distal end of the newborn hair and the ratio of the longitudinal axis diameter of the scale exposed to the surface of the hair to the diameter of the hair by scanning electron microscopy(SEM). Neonatal hair was observed to taper from the area adjacent to the scalp toward the end of the hair. In this study, as the thickness of the hair increases, the ratio of the long axis diameter of the exposed scale becomes relatively small, but the long axis diameter of the exposed scale on the surface of the hair is similar in length regardless of the thickness of the hair. In conclusion, it was confirmed that the major axis diameter of the scales exposed to the surface of fine or thick hair does not change significantly.

Aerodynamic Analysis of Various Winglets (윙렛 형상에 따른 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2008
  • Aircraft fuel efficiency is one of main concerns to aircraft manufacturers and to aviation companies because jet fuel price has tripled in last ten years. One of simple and effective methods to increase fuel efficiency is to reduce aircraft induced drag by using of wingtip devices. Induced drag is closely related to the circulation distribution, which produces strong wingtip vortex behind the tip of a finite wing. Wingtip devices including winglets can be successfully applied to reduce induced drag by wingtip vortex mitigation. Winglet design, however, is very complicated process and has to consider many parameters including installation position, height, taper ratio, sweepback, airfoil, toe-out angle and cant angle of winglets. In current research, different shapes of winglets are compared in the view of vortex mitigation. Appropriately designed winglets are proved to mitigate wingtip vortex and to increase lift to drag ratio. Also, the results show that winglets are more efficient than wingtip extension. That is the reason B-747-400 and B-737-800 chose winglets instead of a span increase to increase payload and range. Drag polar comparison chart is presented to show that minimum drag is increased by viscous drag of winglet, but at high lift, total drag is reduced by induced drag decrease. So, winglets are more efficient for aircraft that cruises at a high lift condition, which generates very strong wingtip vortex.

  • PDF