• 제목/요약/키워드: Tantalum powder

검색결과 42건 처리시간 0.021초

스퍼터링 타겟재의 응용을 목적으로 하는 탄탈륨 소결체의 제작 및 평가 (Fabrication and Evaluation of Tantalum Compacts for Sputtering Target Application)

  • 장세훈;최정철;최세원;오익현
    • 한국재료학회지
    • /
    • 제18권4호
    • /
    • pp.181-186
    • /
    • 2008
  • In this study, tantalum (Ta) compacts were fabricated in a spark plasma sintering (SPS) process and their microstructure and mechanical properties were investigated. Ta compacts with a density of 99% were successfully fabricated by controlling the sintering conditions of the current and the temperature. The density and hardness were increased as the sintering temperature increased. The $Ta_2C$ compound was observed at the surface of the compacts due to the contact between the Ta powder and graphite mold during the sintering process. The main fracture mode showed a mixed type with intergranular and transgranular modes having some roughness.

Chemical Vapor Deposition of Tantalum Carbide from TaCl5-C3H6-Ar-H2 System

  • Kim, Daejong;Jeong, Sang Min;Yoon, Soon Gil;Woo, Chang Hyun;Kim, Joung Il;Lee, Hyun-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.597-603
    • /
    • 2016
  • Tantalum carbide, which is one of the ultra-high temperature ceramics, was deposited on graphite by low pressure chemical vapor deposition from a $TaCl_5-C_3H_6-Ar-H_2$ mixture. To maintain a constant $TaCl_5/C_3H_6$ ratio during the deposition process, $TaCl_5$ powders were continuously fed into the sublimation chamber using a screw-driven feeder. Sublimation behavior of $TaCl_5$ powder was measured by thermogravimetric analysis. TaC coatings have various phases such as $Ta+{\alpha}-Ta_2C$, ${\alpha}-Ta_2C+TaC_{1-x}$, and $TaC_{1-x}$ depending on the powder feeding methods, the $C_3H_6/TaCl_5$ ratio, and the deposition temperatures. Near-stoichiometric TaC was obtained by optimizing the deposition parameters. Phase compositions were analyzed by XRD, XPS, and Raman analysis.

칼슘 열환원법에 의한 Ta2O5로부터 Ta분말제조 (Tantalum Powder Preparation from Ta2O5 by Calciothermic Reduction)

  • 하정우;손호상;정재영
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.823-828
    • /
    • 2012
  • Direct reduction of $Ta_2O_5$ using liquid calcium was investigated. The experiment was conducted in a closed stainless steel chamber in an Ar atmosphere for 5-120 minutes. Most of $Ta_2O_5$ was reduced to ${\alpha}-Ta$ in 30 minutes above 1173 K and at a molar ratio of Ca and $Ta_2O_5$ above 10. The particles size increased with the reaction temperature, but it did not change much above 1223 K. The oxygen content of metal Ta was about 1 wt%.

도전체 매개반응(EMR)법에 의한 Ti 분말 제조 (Production of Titanium Powder by Electronically Mediated Reaction (EMR))

  • 박일;추용호;이철로;이오연
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.857-862
    • /
    • 2004
  • Production of titanium powder directly from tantalum oxides ($TiO_2$) pellet through an electronically mediated reaction (EMR) by calciothermic reduction has been investigated. Feed material ($TiO_2\;pellet$) and reductant (Ca-Ni alloy) were charged into electronically isolated locations in a molten calcium chloride ($CaCl_2$) bath at $950^{\circ}C$. The current flow through an external circuit between the feed (cathode) and reductant (anode) locations was monitored during the reduction of $TiO_2$. The current approximately 3.2A was measured during the reaction in the external circuit connecting cathode and anode location. After the reduction experiment, pure titanium powder with low nickel content was obtained even though Ca-Ni alloy was used as a reductant. These results demonstrate that titanium powder can be produced without direct physical contact between the feed and reductant. In certain experimental conditions, pure titanium powder with approximately $99.5\;mass\%$ purity was successfully obtained.

기계적합금법에 의한 $\textrm{TiB}_2$ 분말의 제조 및 Zr과 Ta이 합성에 미치는 영향 (Synthesis of $\textrm{TiB}_2$ Powder by Mechanical Alloying and the Effect of Zr and Ta Substitution for Ti)

  • 황연;강을손
    • 한국재료학회지
    • /
    • 제9권8호
    • /
    • pp.787-791
    • /
    • 1999
  • 기계적합금법으로 Ti와 B의 혼합분말로부터 $TiB_2$분말을 제조하였고, Zr과 Ta의 Ti 치환 효과를 조사하였다. (Ti+B)의 혼합분말을 280시간 분쇄하여 $TiB_2$단일상을 얻었고 기계적합금화 도중 비정질상은 관찰되지 않았다. Ti의 일부를 원자반경이 Ti보다 큰 Zr으로 치환한 결과 기계적합금화에 걸리는 시간이 크게 감소한 반면에, 붕화물 생성열이 절대값이 $TiB_2$상보다 작은 Ta로 치환하면 280시간 분쇄하여도 단일상을 형성하지 못하였다.

  • PDF

Mechanical Alloying Effect in Immiscible Cu-Based Alloy Systems.

  • Lee, Chung-Hyo;Lee, Seong-Hee;Kim, Ji-Soon;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.164-167
    • /
    • 2003
  • The mechanical alloying effect has been studied on the three Cu-based alloy systems with a positive heat of mixing. The extended bcc solid solution has been formed in the Cu-V system and an amorphous phase in the Cu-Ta system. However, it is round that a mixture of nanocrystalline Cu and Mo Is formed in the Cu-Mo system. The neutron diffraction has been employed at a main tool to characterize the detailed amorphization process. The formation of an amorphous phase in Cu-Ta system can be understood by assuming that the smaller Cu atoms preferentially enter into the bcc Ta lattice during ball milling.

Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성 (Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process)

  • 이지혜;김지원;이기안
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.