• Title/Summary/Keyword: Tantalum nitride

Search Result 39, Processing Time 0.026 seconds

Synthesis of Tantalum Oxy-nitride and Nitride using Oxygen Dificiency Tantalum Oxides (산소결핍 탄탈륨 산화물을 활용한 탄탈륨 산질화물 및 질화물 합성)

  • Park, Jong-Chul;Pee, Jae-Hwan;Kim, Yoo-Jin;Choi, Eui-Seock
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.489-495
    • /
    • 2008
  • Colored tantalum oxy-nitride (TaON) and tantalum nitride ($Ta_{3}N_{5}$) were synthesized by ammonolysis. Oxygen deficient tantalum oxides ($TaO_{1.7}$) were produced by a titration process, using a tantalum chloride ($TaCl_5$) precursor. The stirring speed and the amount of $NH_{4}OH$ were important factors for controling the crystallinity of tantalum oxides. The high crystallinity of tantalum oxides improved the degree of nitridation which was related to the color value. Synthesized powders were characterized by XRD, SEM, TEM and Colorimeter.

Effect of By-product (NH4Cl) on the Improvement of the Red Color Tone of Tantalum Nitride (Ta3N5) (탄탈륨 질화물(Ta3N5)의 적색도 향상에 미치는 NH4Cl의 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.583-586
    • /
    • 2009
  • The Tantalum nitride has attracted wide at attention as issues related to the toxicity of Cd-related materials. But in the titration process of Ta$Cl_5$ solution with $NH_4$OH, $NH_4$Cl, as a by product, was remained in the prepared Tantalum precursor. The tantalum precursor with $NH_4$Cl was nitrided by ammonolysis. The red color tone of $Ta_3N_5$ was reduced by the residual $NH_4$Cl reduce. Therefore, amorphous Tantalum precursor was prepared by filtering process with as hydrous ethanol to remove the $NH_4$Cl. In the case of using Tantalum precursor without $NH_4$Cl, we successfully synthesized the Tantalum nitride with good red color. The value of red color tone was improved from $a^*$=36.8 to $a^*$=53.0. The synthesized powder was characterized by XRD, SEM, the Nitrogen / Oxygen Determinator, TG-DTA, and the CIE $L^*a^*b^*$ colorimeter.

Roles of Phosphoric Acid in Slurry for Cu and TaN CMP

  • Kim, Sang-Yong;Lim, Jong-Heun;Yu, Chong-Hee;Kim, Nam-Hoon;Chang, Eui-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2003
  • The purpose of this study was to investigate the characteristics of slurry including phosphoric acid for chemical-mechanical planarization of copper and tantalum nitride. In general, the slurry for copper CMP consists of alumina or colloidal silica as an abrasive, organic acid as a complexing agent, an oxidizing agent, a film forming agent, a pH control agent and additives. Hydrogen peroxide (H$_2$O$_2$) is the material that is used as an oxidizing agent in copper CMP. But, the hydrogen peroxide needs some stabilizers to prevent decomposition. We evaluated phosphoric acid (H$_3$PO$_4$) as a stabilizer of the hydrogen peroxide as well as an accelerator of the tantalum nitride CMP process. We also estimated dispersion stability and zeta potential of the abrasive with the contents of phosphoric acid. An acceleration of the tantalum nitride CMP was verified through the electrochemical test. This approach may be useful for the development of the 2$\^$nd/ step copper CMP slurry and hydrogen peroxide stability.

A Study on the double-layered dielectric films of tantalum oxide and silicon nitride formed by in situ process (연속 공정으로 형성된 탄탈륨 산화막 및 실리콘 질화막의 이중유전막에 관한 연구)

  • 송용진;박주욱;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.44-50
    • /
    • 1993
  • In an attempt to improve the electrical characteristics of tantalum pentoxide dielectric film, silicon substrate was reacted with a nitrogen plasma to form a silicon nitride of 50.angs. and then tantalum pentoxide thin films were formed by reactive sputtering in the same chamber. Breakdown field and leakage current density were measured to be 2.9 MV/cm and 9${\times}10^{8}\;A/cm^{2}$ respectively in these films whose thickness was about 180.angs.. With annealing at rectangular waveguides with a slant grid are investigated here. In particular, 900.deg. C in oxygen ambient for 100 minutes, breakdown field and leakage current density were improved to be 4.8 MV/cm and 1.61.6${\times}10^{8}\;A/cm^{2}$ respectively. It turned out that the electrical characteristics could also be improved by oxygen plasma post-treatment and the conduction mechanism at high electric field proved to be Schottky emission in these double-layered films.

  • PDF

Effect of Alanine on Cu/TaN Selectivity in Cu-CMP (Cu-CMP에서 Alanine이 Cu와 TaN의 선택비에 미치는 영향)

  • Park Jin-Hyung;Kim Min-Seok;Paik Ungyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.426-430
    • /
    • 2005
  • Chemical mechanical polishing (CMP) is an essential process in the production of integrated circuits containing copper interconnects. The effect of alanine in reactive slurries representative of those that might be used in copper CMP was studied with the aim of improving selectivity between copper(Cu) film and tantalum-nitride(TaN) film. We investigated the pH effect of nano-colloidal silica slurry containing alanine through the chemical mechanical polishing test for the 8(inch) blanket wafers as deposited Cu and TaN film, respectively. The copper and tantalum-nitride removal rate decreased with the increase of pH and reaches the neutral at pH 7, then, with the further increase of pH to alkaline, the removal rate rise to increase soddenly. It was found that alkaline slurry has a higher removal rate than acidic and neutral slurries for copper film, but the removal rate of tantalum-nitride does not change much. These tests indicated that alanine may improve the CMP process by controlling the selectivity between Cu and TaN film.

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

Effects of Doping Elements and the Amounts of Oxygen/Nitrogen Contents in Final Nitrides on the Characteristics of Red Pigment of Tantalum Nitrides (Ta3N5) (적색 안료인 탄탈륨 질화물(Ta3N5)의 특성에 도핑 물질 및 최종질화물의 산소/질소 함량이 미치는 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.396-402
    • /
    • 2009
  • Tantalum nitrides ($Ta_3N_5$) have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.

Characteristics of TaN by Atomic Layer Deposition as a Copper Diffusion Barrier (ALD법을 이용해 증착된 TaN 박막의 Cu 확산방지 특성)

  • Na, Kyoung-Il;Hur, Won-Nyung;Boo, Sung-Eun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.195-198
    • /
    • 2004
  • For a diffusion barrier against copper, tantalum nitride films have been deposited on $SiO_{2}$ by atomic layer deposition (ALD), using PEMAT(Pentakis(ethylmethylamino)tantalum) and $NH_{3}$ as precursors, Ar as purging gas. The deposition rate of TaN at substrate temperature $250^{\circ}C$ was about $0.67{\AA}$ per one cycle. The stability of TaN films as a Cu diffsion barrier was tested by thermal annealing for 30 minutes in $N_{2}$ ambient and characterized through XRD, sheet resistance, and C-V measurement(Cu($1000{\AA}$)/TaN($50{\AA}$)/$SiO_{2}$($2000{\AA}$)/Si capacitor fabricated), which prove the TaN film maintains the barrier properties Cu below $400^{\circ}C$.