• Title/Summary/Keyword: Tank Gun Barrel

Search Result 6, Processing Time 0.019 seconds

A Study on the Expansive Deformation of Rifle Barrel and Gun Barrel (총열 및 포신의 팽창 변형에 관한 연구)

  • 김동욱;이재영;강영철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, the possibility of plastic deformation of rifle and gun barrels is studied through the numerical methods. When a rifle or tank gun is fired, the expansive deformation of the barrel can occur by the explosive pressure and the thermal effect. Using the ABAQUS program, the stresses and displacements are computed for the elastic and elastic-plastic material property, and the possibility of plasticity deformation is investigated. In conclusion, rifle and tank gun barrel the plastic deformation occurred in some parts of the barrel

  • PDF

A study on the Vibration Damping of a gun barrel using Dynamically Tuned Shroud (차열관을 이용한 포신의 진동 감쇠에 대한 연구)

  • Koh, Jae-Min;Kim, Kyeon-Sik;Kim, Jin-Woo;Jung, Hyun-Woo;Hwang, Jai-Hyuk;Bae, Jai-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.28-36
    • /
    • 2010
  • Current tanks have been developed to increase mobility and firepower, and its maximum range and destructive power are improved. This great change causes remained vibration of a gun barrel after firing. For this reason, people are trying to control vibration of gun barrel effectively. This thesis presents a modeling method and analysis results for gun barrel by using a thermal shroud as an absorber mass. DTS(Dynamically Tuned Shroud) is a vibration damping system using a thermal shroud as an added mass for decreasing remained vibration. The model has an advantage that the gun barrel's vibration can be decreased by dissipating a kinetic energy of thermal shroud without install an additional dynamic absorber to tip of the gun barrel. For analyzing the damping performance of the DTS, We derived an equation of motion of the barrel after setting a mathematical modeling, and found out the frequency analysis and tendency according to stiffness ratio between barrel and shroud.

  • PDF

An Experimental Study on the Vibration Absorber for Vibration Attenuation of Cantilever Beam Structure (외팔보 구조물의 진동감쇠를 위한 동흡진기의 실험적 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.991-996
    • /
    • 2011
  • This study was carried out vibration attenuation of vibration absorber attached to the cantilever beam structure. Modern tank guns are stabilized to allow fire on the move while traversing uneven terrain. However, as the length of the barrel is extended, to meet required muzzle exit velocities, the terrain induced vibrations lead to increased muzzle pointing errors. Thus, reducing these vibrations should lead to increased accuracy. The vibration absorber includes a compliant energy storage device, such as a spring, and a mass secured to the energy storage device. In this study, it accomplished a research in about gun barrel vibration attenuation using tuned mass damper. The barrel was hung from a bungee cord for free-free condition. It accomplished a vibration experiment for verified attenuation efficiency.

A Research on Characteristics of Internal Flow Based on the Gun Barrel Length and Ammunition Pressure. (포신 길이와 탄약 압력에 따른 포신 내부 유동 특성 연구)

  • Jung, Hee-Chur;Kim, Kyoung-Rok;Kang, Yo-Han;Ban, Young-Woo;Jung, Duck-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.513-520
    • /
    • 2018
  • This research concerns the characteristics of tank barrel inner flow according to the barrel length and the pressure of ammunition when fired. By analyzing the flow characteristics of the bore evacuator according to barrel length and ammunition pressure regarding ammunition design, it is possible to prevent the flareback phenomenon that may occur during ammunition operation. Through bore evacuator flow analysis by barrel length and ammunition pressure, we identified key design factors concerning barrel and ammunition compatibility including speed, accuracy, penetration performance and range. Test results found if barrel length is long and ammunition pressure is low, bore evacuator operation time is slow. Therefore, there is a high probability that propellant gas will enter the battle vehicle. Therefore, the correlation analysis method of bore evacuator flow characteristics based on barrel length and ammunition pressure is considered as a primary method to improve operational performance. When designing new ammunition, the correlation analysis method will be used to determine ammunition weight and select the propellant pressure.

A Study on the Reliability Improvement for Assurance Pressure of Tank Gun Barrel (전차 포신의 보증압력 신뢰성 향상 연구)

  • Kim, Sung Hoon;Park, Young Min;Noh, Sang Wan;Jun, Sang Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.115-122
    • /
    • 2020
  • This study aimed to improve the reliability of the assurance pressure of a gun barrel due to the difference between the US Standard and Korean Standard. In addition, the reliability was found to differ according to the maximum pressure of the Ammunition, so restrictions are expected. During the development of the new bullet, the maximum pressure of the bullet was approximately 3,000 psi higher than the assurance pressure of the gun barrel. To solve this problem, the reliability of the cannon was analyzed when the assurance pressure of the gun barrel increased. First of all, the technical data from overseas were reviewed to check for cases of increased assurance pressure, and tests were performed to determine if it could withstand high pressure through a verification firing test. Finally, the simulation analyzed the stability of the recoil buffer. The study found no abnormal results in all items, suggesting that an increase in the assurance pressure for a gun barrel was possible. This study is expected to be used as basic data for future reliability studies of similar equipment.

An Experimental study on the Vibration absorber for vibration attenuation of cantilever beam structure (외팔보 구조물의 진동감쇠를 위한 동흡진기의 실험적 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.627-632
    • /
    • 2011
  • This study was carried out vibration attenuation of vibration absorber attached to the cantilever beam structure. Modern tank guns are stabilized to allow fire on the move while traversing uneven terrain. However, as the length of the barrel is extended, to meet required muzzle exit velocities, the terrain induced vibrations lead to increased muzzle pointing errors. Thus, reducing these vibrations should lead to increased accuracy. The vibration absorber includes a compliant energy storage device, such as a spring, and a mass secured to the energy storage device. In this study, it accomplished a research in about gun barrel vibration attenuation using tuned mass damper. The barrel was hung from a bungee cord for free - free condition. It accomplished a vibration experiment for verified attenuation efficiency.

  • PDF