• 제목/요약/키워드: Tangential firing boiler

검색결과 4건 처리시간 0.017초

500 MWe급 접선 연소 보일러 해석시 난류 혼합 속도 및 석탄 연소 모델의 영향 평가 (Assessment of the influence of coal combustion model and turbulent mixing rate in CFD of a 500 MWe tangential-firing boiler)

  • 양주향;강기섭;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.69-72
    • /
    • 2015
  • Computational fluid dynamics (CFD) modeling of large-scale coal-fired boilers requires a complicated set of flow, heat transfer and combustion process models based on different degrees of simplification. This study investigates the influence of coal devolatilization, char conversion and turbulent gas reaction models in CFD for a tangential-firing boiler at 500MWe capacity. Devolatilization model is found out not significant on the overall results, when the kinetic rates and the composition of volatiles were varied. In contrast, the turbulence mixing rate influenced significantly on the gas reaction rates, temperature, and heat transfer rate on the wall. The influence of char conversion by the unreacted core shrinking model (UCSM) and the 1st-order global rate model was not significant, but the unburned carbon concentration was predicted in details by the UCSM. Overall, the effects of the selected models were found similar with previous study for a wall-firing boiler.

  • PDF

500MW급 접선분사형 미분탄보일러의 $NO_{x}$ 저감에 관한 수치해석적 연구 (A Numerical Study on the $NO_{x}$ Reduction in 500MW Pulverized Coal Tangential Firing Boiler)

  • 최청렬;강대웅;김창녕;박만흥;김광추;김종길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.967-972
    • /
    • 2001
  • The emission of $NO_{x}$ during coal combustion is a major reason of environment impact. $NO_{x}$ is an acid rain precursor and participates in the generation of smog through ozone production. $NO_{x}$ can be divided into thermal $NO_{x}$, fuel $NO_{x}$ and prompt $NO_{x}$. Thermal $NO_{x}$ is formed in a highly temperature condition dependent. Fuel $NO_{x}$ is dependent on the local combustion characteristics and initial concentration of nitrogen bound compound, while prompt $NO_{x}$ is formed in a significant quantity in some combustion environments, such as low temperature and short residence times. This paper presents numerical simulation of the flow and combustion characteristics in the furnace of a tangential firing boiler of 500MW with burners installed at the every comer of the furnace. The purpose of this paper is to investigate the reduction of $NO_{x}$ emission in a 500MW pulverized coal tangential firing boiler with different OFA's and burner angles. Calculations with different air flow rates of over fired air(OFA) and burner angles are performed.

  • PDF

접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구 (Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler)

  • 강기섭;류창국
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.548-555
    • /
    • 2017
  • 본 연구는 560 MWe급 접선연소식 미분탄 보일러에서 공기단계연소에 의한 연소 및 NOx 배출 특성과 슬래깅성에 대하여 분석한 것이다. 이를 위해 고급 석탄 연소 모델이 적용된 전산유체역학(CFD) 시뮬레이션을 이용하여 전체 연소공기의 당량비(SR)는 1.2로 고정하고, 버너 영역의 SR을 0.94에서 0.995까지 변화시켰다. 공기 배분의 변화에 따라 버너 영역 및 열교환기의 온도 및 전열량 분포가 변하지만 보일러의 전체 효율은 거의 동일하게 나타났다. 버너 영역의 SR이 0.94로 낮아지면 Fuel NO의 생성이 억제되어 절탄기 출구 NOx 배출량은 20% 감소하나, 미연분과 슬래깅성에는 큰 영향이 나타나지 않았다. 따라서, 이 보일러에서 NOx 배출 저감을 위해 공기배분을 조절하여 버너 영역의 SR를 낮추고 상부연소공기(OFA)의 값을 높여 운전하는 것이 타당함을 확인하였다.

국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구 (The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching)

  • 백세현;김현희;박호영;김영주;김태형;고성호
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.