• Title/Summary/Keyword: Tangential Load

Search Result 114, Processing Time 0.02 seconds

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators (형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구)

  • Choi, S.;Lee, J.J.;Lee, D.C.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • In this paper, the thermal buckling and postbuckling behaviour of composite beam with embedded shape memory alloy (SMA) wires are investigated experimentally and analytically. The results of thermal buckling tests on uniformly heated, clamped, composite beam embedded with SMA wire actuators are presented and discussed in consideration of geometric imperfections, slenderness ratio of beam and embedding position of SMA wire actuators. The shape recovery force can reduce the thermal expansion of composite laminated beam, which result in increment of the critical buckling temperature and reduction of the lateral deflection of postbuckling behaviours. It is presented quantitatively on the temperature-load-deflection behaviour records how the shape recovery force affects the thermal buckling. The cross tangential method is suggested to calculate the critical buckling temperature on the temperature-deflection plot. Based on the experimental analysis, the new formula is also proposed to describe the critical buckling temperature of a laminated composite beam with embedded SMA wire actuators.

  • PDF

Elasto-plastic Anisotropic Wood Material Model for Finite Solid Element Applications (탄소성이방성 솔리드 유한요소법 활용을 위한 목재 재료 모델 생성 연구)

  • Hong, Jung-Pyo;Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • A simplified material model, which was efficiently implemented in a three-dimensional finite solid element (3D FE) analysis for wood was developed. The bi-linear elasto-plastic anisotropic material theory was adopted to describe constitutive relations of wood in three major directions including longitudinal, radial and tangential direction. The assumption of transverse isotropy was made to reduce the requisite 27 material constants to 6 independent constants including elastic moduli, yield stresses and Poisson's ratios in the parallel, and perpendicular to grain directions. The results of Douglas fir compression tests in the three directions were compared to the 3D FE simulation incorporated with the wood material model developed in this study. Successful agreements of the results were found in the load-deformation curves and the permanent deformations. Future works and difficulties expected in the advanced application of the model were discussed.

Finite Element Method for Structural Concrete Based on the Compression Field Theory (압축응력장 이론을 적용한 콘크리트 유한요소법 개발)

  • 조순호
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.151-159
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory) concept such as the effect of compression softening in cracked concrete, and macroscopic and rotating crack models etc. was presented for the nonlinear behaviour of structural concrete. In this category, tangential or secant material stiffnesses for cracked concrete were also defined and discussed in view of the iterative solution schemes for nonlinear equations. Considering the computational efficiency and the ability of modelling the post-ultimate behaviour as major concerns, the incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Nonlinear Analysis of structrual Concrete by FEM : Monotonic Loading) developed baed on the CFT constitutive relationships and the incremetal solution strategy described enables the predictions of strength and deformation capacities in a full range. crack patterns and their corresponding widths, and yield extents of reinforcement. As the verfication purpose of NASCOM, the prediction of Cervenka's panel test results including the load resistance and the deformation history was made. A limited number of predictions indicate a good correlation in a general sense.

  • PDF

A Study on Ground Vehicle Mechanics for Steep Slope Forest Operations - Rubber-Tired Log Skidding Tractor Operations - (급경사지 산림작업을 위한 차량의 역학분석에 관한 연구 -차륜형 집재작업 트랙터를 중심으로-)

  • Chung, Joo Sang;Chung, Woo Dam
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.218-225
    • /
    • 1995
  • In this paper, a mechanical analysis model for steep-slope log-skidding operations of a rubber-tired tractor is discussed and the applicability of the model is investigated. The model largely consists of mathematical analysis models for log drag, dynamic vehicle weight distributions and soil-vehicle traction. For the case study, a theoretical data set for log skidding operations is used in investigating the effect of the factors influencing the results of mechanical analysis or the productivity of skidding operations. The analyses include 1) the effect of log choking methods on tangential log-skidding force, 2) the effects of the change in travel speed and log load on the required input power to the wheels and 3) the log skidding performance of a two-wheel drive compared with that of a four-wheel drive.

  • PDF

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

An Experimental Study on the Modelling for the Prediction of the Behaviour of EPS (EPS의 거동 예측 모델에 관한 실험적 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.127-136
    • /
    • 1996
  • Recently, EPS which has unit weight of only 20~30kg/m3, is used for acquiring the safety of settlement and bearing capacity, In Korea, EPS was first used in 1993 as backfill material for abutment that was constructed on soft ground in Inchon. Since then EPS has been used increasingly as backfill material. However, adequate modelling has not yet been proposed for the prediction of the behavior of EPS. Only it's design strength was proposed as the results of unconfined strength and creep test. Accordingly this paper executed triaxial compression test on EPS with various density and confining pressure. Through the analysis of test data the behavior of EPS for strainstress, tangential modulus and poisson's ratio can be expressed in functions with parameters of density and confining pressure of EPS. From these results, this paper proposed a nonliner model describing the behavior of EPS.

  • PDF

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.