• Title/Summary/Keyword: Tanδ

Search Result 12, Processing Time 0.019 seconds

Influence of SBR Type and Blend Ratio on Dynamic Mechanical Properties of SBR/SBR Biblend Composites

  • Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.17-21
    • /
    • 2024
  • Solution styrene-butadiene rubber (S-SBR) is used to improve the wet grip and rolling resistance properties of tire treads. As blending of SBRs can improve the physical properties of tire treads, we investigated the effects of SBR type and blending ratio on the physical properties. Twelve SBR/SBR biblend composites were prepared using four SBRs with different microstructures. The glass transition temperature (Tg), tanδ at 0℃ (wet grip predictor), and tanδ at 60℃ (rolling resistance predictor) were obtained from dynamic mechanical analysis, and were compared to the expected values obtained from the results of single SBR samples. Most of the SBR/SBR biblend composites exhibited crosslink densities lower than the expected values. The tanδ values at 0℃ and 60℃ of the SBR/SBR blend composites deviated from the expected values, with many of the deviations being disadvantageous. Of the twelve composites, six samples had higher 0℃ tanδ values than the corresponding expected values, and four exhibited superior wet grip properties to those of the SBR single samples. In addition, two of the twelve samples exhibited improved rolling resistance properties as compared with the single SBR samples. Finally, four samples exhibited lower Tg values than expected, and the Tg of one composite was lower than those of the single SBR samples.

The Investigation on Thermal Aging Characteristics of Oil-Paper Insulation in Bushing

  • Liao, Rui-jin;Hu, En-de;Yang, Li-jun;Xu, Zuo-ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1114-1123
    • /
    • 2015
  • Bushing is the key link to connect outer and inner insulating systems and also the essential electric accessory in electric power system, especially in the high voltage engineering (AC 1000kV, DC 800kV). This paper presented the experimental research of thermal aging characteristic of oil-paper insulation used in bushing. A thermally accelerated aging experiment at 90℃ was performed. The bushing models containing five layers of paper were sealed into the aging vessels and further aged for 250 days. Then several important parameters associated with the aging were observed and evaluated. The results showed that the degree of polymerization (DP) of papers gradually decreased. The DP values of outermost layer and middle layer fit well into the second-order kinematic model and first-order kinematic model, respectively. Less deterioration speed of the inter-layer paper than outer layer was confirmed by the variation of DP. Hydrolysis was considered as the main cause to this phenomenon. In addition, the logarithm of the furfural concentrations in insulation oil was found to have good linear relationship with DP of papers. Interestingly, when the aging time is about 250 days and DP is 419, the aging process reaches an inflection point at which the DP approaches the leveling off degree of polymerization (LODP) value. Both tanδ and acid number of oils increased, while surface and volume resistivity of papers decreased. The obtained results demonstrated that thermal aging and moisture absorbed in papers brought great influence to the degradation of insulating paper, leading to rapid decrease of DP and increase of the tanδ. Thus, the bushing should be avoided from damp and real-time monitoring to the variation of tanδ and DP values of paper is an effective way to evaluate the insulation status of bushing.

A Statistical Analysis to the VLF Tanδ Criteria for Aging Diagnosis in Power Cables (전력케이블 열화진단을 위한 극저주파 탄델타 판정기준의 통계적 해석)

  • Jung, Woosung;Kim, Seongmin;Lim, Jangseob;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • In this study, the objective is to improve the criteria used for statistical comparison of the VLF tanδ (TD) database and failure rate according to water-tree degradation in underground distribution power cables. The aging condition of the KEPCO criteria is divided into 6 levels using the Weibull distribution, and the "failure imminent" condition is quantified by using the statistical end-point of the lifetime parameter of the VLF big-data group obtained from KEPCO. Moreover, new criteria with a 2-dimensional combination of TD, DTD, and a statistical normalized factor are suggested. These criteria exhibit high reproducibility for the detection of cables in an imminent failure state. Consequently, it is expected that the adoption of the extended VLF-2019 criteria will reduce the asset management cost of cable replacement compared to the VLF-2012 criteria of KEPCO.

An Amendment of the VLF tanδ Criteria to Improve the Diagnostic Accuracy of the XLPE-insulated Power Cables (XLPE 절연케이블의 열화진단 정확도 향상을 위한 VLF tanδ 판정기준 개선)

  • Lee, Jae-Bong;Jung, Yeon-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1644-1651
    • /
    • 2010
  • VLF $tan{\delta}$ diagnosis technology is introduced in IEEE Std 400 and proposed as evaluation criterion in an effective way of detecting water tree which mainly causes the failure of XLPE insulated cables. In order to inspect the accuracy of the VLF $tan{\delta}$ method for XLPE insulated power cables in Korean distribution system, diagnosis for 41 cables which were being serviced in the fields has been carried out and they were removed for AC breakdown voltage test after. Regarding the 41 cables, it was hard to confirm any relation between the VLF $tan{\delta}$ values and AC breakdown voltages and also water tree in the insulation was not detected. However, the other cables were failed several days after the diagnosis of the 41 cables. Water trees were found and their VLF $tan{\delta}$ values were also much higher than the criterion of IEEE standard. It has been ascertained that we need to change the IEEE criteria in order to improve the accuracy of detecting water trees by additional analyzing of field examples of failure and case studies from overseas countries and therefore amended VLF $tan{\delta}$ test voltage and evaluation criteria have been proposed.

Crystal structure, microstructure, and low-loss dielectric property of MgO-added (Ca,Sr)(Zr,Ti)O3 (MgO가 첨가된 (Ca,Sr)(Zr,Ti)O3의 결정구조, 미세구조 및 저손실 유전특성)

  • Do-Hyeok Lee;Kyoung-Seok Moon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.261-267
    • /
    • 2023
  • Crystal structure, microstructure, and dielectric properties of the (Ca, Sr)(Zr, Ti)O3 (CSZT) system has been studied as a function of sintering temperature and MgO addition for microwave applications. A single-phase CSZT powder with the orthorhombic crystal structure was obtained by the solid-state reaction method. The powder compacts were sintered at 1200℃, 1300℃, and 1400℃ respectively. All the sintered samples had a single-phase orthorhombic crystal structure and grain size increased with sintering temperature. In the case of 1 mol% MgO addition, the orthorhombic crystal structure was the main phase; however, a secondary phase appeared during sintering at 1400℃, as determined by EDS analysis. At 1400℃, the undoped and MgO-doped CSZT had almost similar grain size distribution and densification but the grain size distribution became slightly narrow. The MgO-doped CSZT showed excellent low-loss dielectric properties: εr = 34.14, tanδ = 0.00047, τε = -3.58 ppm/℃ at 1 MHz.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Dielectric Properties of Epoxy/Micro-sized Alumina Composite and of Epoxy/Micro-sized/Nano-sized Alumina Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.338-341
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared, and the effects of alumina content on the dielectric properties were investigated in order to develop an insulation material for gas-insulated switchgears (GIS). Nano-sized alumina (average particle size: 30 nm) was also incorporated into the epoxy/micro-sized alumina composite. Dielectric tests were carried out in ASTM D 150, and capacitance (Cp) and dielectric loss (tanδ) were measured. The dielectric constant increased with increasing alumina content in the epoxy/micro-alumina system and the epoxy/micro-alumina/nano-alumina system. As 1,3-diglycidyl glyceryl ether (DGE) content increased, the dielectric constant decreased and dielectric loss increased. This ocurred as a result of the weak electric field enhancement due to homogeneous dispersion of micro- and nano-sized alumina particles in an epoxy composite.

The Physical and Thermal Properties Analysis of the VOC Free Composites Comprised of Epoxy Resin, and Dicyandiamide (VOC Free Epoxy Resin/Dicyandiamide 경화물의 배합비 변화에 따른 물리적 특성 및 열적특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young IL;Kim, Young Chul;Lim, Choong-Sun
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2015
  • Volatile organic compounds (VOC) free adhesives have been interested by many scientists and engineers due to environmental regulations and the safety of industrial workers. In this work, a series of composites composed with bisphenol A epoxy resin used as solvent, dicyandiamide, and promoter were prepared to investigate the most appropriate molar ratio for steel-steel adhesion. The cured test specimen of each composite were measured with universal testing machine (UTM) to figure out mechanical properties such as tensile strength, Young’s modulus, and elongation. Furthermore, the lap shear strength of the specimen was tested with UTM while impact resistance was measured with Izod impact tester. The composite whose molar ratio of epoxy resin to curing agent is 1 : 0.9 (sample 3), showed better tensile strength, coefficient of elastic modulus, elongation, and impact strength than other composites did. The highest tanδ from dynamic mechanical analysis (DMA) was observed from sample 2 (epoxy resin: dicy = 1 : 0.7) while sample 3 showed slightly lower tanδ than that of 2. The morphology of the fracture surface of the cured composites from SEM showed that the number of subtle lines on the surface caused by impact increase as the contents of amine curing agent accrete. Furthermore, the viscosity change of sample 5 (epoxy resin: dicy = 1 : 1.3) was observed to confirm its storage stability.

A Study on the Properties of 36,000lb Porcelain Insulators by Contained Alumina of Raw Materials

  • Choi In-Hyuk;Choi Jang-Hyun;Jung Yoon-Hwan;Lee Dong-Il
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.8-13
    • /
    • 2005
  • In order to analyze the properties of domestically produced 36,000lb porcelain insulators by change of the alumina addition to raw materials, 36000lb ball socket type suspension insulators that were manufactured in 1989, 1995 and 2001 were removed from transmission lines and an experiment was performed. The results indicated that 8 [wt.%] alumina, which influences the mechanical properties and arc resistance properties in the case of insulators that were manufactured in 1989 was contained, and the relative density and the fracture toughness of insulators appeared by 94.2% and 1.4 [MpaㆍM/sup 1/2/], respectively. However, 12 [wt.%] alumina was contained in the case of insulators that were manufactured in 1995, and the relative density and the fracture toughness of insulators appeared preferably lower by 92% and 1.3 [MpaㆍM/sup 1/2/], respectively. The greatest amount of alumina was contained by 17 [wt.%] in the case of insulators that were manufactured in 2001. It was confirmed that the electrical and mechanical characteristics such as the relative density and the fracture toughness appeared remarkably by 96% and 1.7 [Mpaㆍm/sup 1/2/], respectively.

A Study on Dielectric Properties of Flame-Retardant Silicone Rubber Due to Silica Amount Change (실리카 양 변화에 의한 난연성 실리콘 고무의 유전특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.364-370
    • /
    • 2021
  • In this study, the dielectric properties of flame retardant silicone rubber mixed with the amount of silica 50~65 phr were measured at frequencies ranging from 1 to 2.7 MHz and temperature ranges from 30℃ to 160℃. The permittivity decreased with higher frequencies and higher temperatures, and tanδ are thought to have decreased due to the increased heat oxidation of the methyl group bound to Si, which increased the hardness of silicone rubber. FT-IR analysis of specimen mixed with SiO2 of 50~65 phr showed oscillations of OH groups bound to SiO2 between wavenumber 3,600 and 3,300. As a result of analyzing surface components by Energy Dispersive X-ray (EDX) on all specimens mixed with SiO2 of 50 to 65 phr, all specimens contained Si, and the analysis by field emission scanning electron (FE-SEM) confirmed that about 1~5 ㎛ particles were distributed regularly on the surface of the specimens.