• Title/Summary/Keyword: Tamoxifen

Search Result 135, Processing Time 0.049 seconds

Study on Antiestrogenic Effects of Tamoxifen in Immature Rat Uterus: II. Effects on Synthesis of Ribonucleic Acid and Protein (미성숙 쥐 자궁에서 Tamoxifen의 Antiestrogen 효과에 관한 연구 : II. Ribonucleic Acid 및 단백질 합성능력에 관하여)

  • Lee, Hyo-jong;Jo, Choong-ho;Park, Moo-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 1986
  • The present study has been carried out to elucidate the antiestrogenic effects of tamoxifen on RNA and protein synthesis in uteri of immature rats. Immature female Sprague-Dawley rats were allocated into 4 groups and injected with $5{\mu}g$ of estradiol-$17{\beta}$, $50{\mu}g$ of tamoxifen, a combination of both, or vehicle only subcutaneously three times with an interval of 24 hours respectively. The specific activities of $^3H$-uridine incorporation into uterine RNA and those of $^3H$-leucine incorporation into uterine protein were measured before and 1, 3, 6, 12, 24, 48 and 72 hours after the above treatments. The results obtained were summarized as follows; 1. Tamoxifen itself increased RNA synthesis an hour after treatment(169.18% of control), but it's specific activity was reduced to control level after 3 hours. Tamoxifen inhibited significantly (p<0.01) the activity of RNA synthesis of estradiol-$17{\beta}$. 2. The increasing rate of protein synthesis was lower in tamoxifen treated group than that in estradiol-$17{\beta}$ treated group. While the rate was steadily increased up to 357.4% of control by estradiol-$17{\beta}$ in 72 hours, tamoxifen itself failed to increase the rate after 24 hours and significantly (p<0.01) inhibited the activity of estradiol-$17{\beta}$(-167.4%).

  • PDF

ANTICANCER EFFECT OF TAMOXIFEN IN ORAL CANCER CELL (구강암세포주에서의 Tamoxifen의 항암효과)

  • Jung, Jae-Hwa;Yun, Pil-Young;Myoung, Hoon;Shin, Jae-Il;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2003
  • Tamoxifen is an selective estrogen receptor antagonist widely used in the management of patients with breast cancer for more than 30 years. It was thought to act primarily through occupying the estrogen receptor sites in ER positive breast cancer cells and directly on cancer cell proper. These inhibitory effects, which have been shown to be independent of the ER, highlight new mechanism of therapeutic action of tamoxifen. The purposes of this study were to identify ER in oral carcinoma cell lines and to evaluate ER independent cytotoxic effect of tamoxifen. KB(SCC), HSC-3(SCC) and A253(ACC) cell line were used and capacity of cell proliferation, apoptosis, in vitro invasion and gelatin zymography were tested. ER expression of each cell line were detected by RT-PCR and immunocytochemistry. Dose dependent inhibition of cell proliferation and inhibition of gelatinolytic activity were observed in all oral carcinoma cell lines and significant difference of apoptotic index were observed in A253 and KB. Tamoxifen inhibited in vitro invasion in all experimental groups. ER expression was detected in KB and A253. These data suggest that tamoxifen may play a role in management of oral carcinoma by independent cytotoxic effect and more advanced research must processed confirming ER-dependent cytotoxicity.

동자개 Pseudobagrus fulvidraco에서의 tamoxifen 첨가 먹이 공급 효과. 1. 성장

  • 오흥식;구재근;박인석
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.187-188
    • /
    • 2001
  • 본 연구는 현재 양식 산업화가 진행되고 있는 동자개 Pseudobagrus fulvidraco를 대상으로 양식 산업성 증대를 목적으로, tamoxifen에 의한 성장에 연관된 항목 즉, 체중, 체장, 비만도, 일일성장률 및 사료효율을 조사하여 동자개에서의 tamoxifen에 의한 그 효과를 평가하고자 한다. (중략)

  • PDF

Anti-Mycobacterial Activity of Tamoxifen Against Drug-Resistant and Intra-Macrophage Mycobacterium tuberculosis

  • Jang, Woong Sik;Kim, Sukyung;Podder, Biswajit;Jyoti, Md. Anirban;Nam, Kung-Woo;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.946-950
    • /
    • 2015
  • Recently, it has become a struggle to treat tuberculosis with the current commercial antituberculosis drugs because of the increasing emergence of multidrug-resistant (MDR) tuberculosis and extensively drug-resistant (XDR) tuberculosis. We evaluated here the antimycobacterial activity of tamoxifen, known as a synthetic anti-estrogen, against eight drugsensitive or resistant strains of Mycobacterium tuberculosis (TB), and the active intracellular killing of tamoxifen on TB in macrophages. The results showed that tamoxifen had antituberculosis activity against drug-sensitive strains (MIC, 3.125-6.25 µg/ml) as well as drugresistant strains (MIC, 6.25 to 12.5 µg/ml). In addition, tamoxifen profoundly decreased the number of intracellular TB in macrophages in a dose-dependent manner.

A Study on Antiestrogenic Effects of Tamoxifen in Immature Rat Uterus; I. Effects on Concentrations of Cytosol and Nuclear Estradiol Receptor (미성숙 쥐 자궁에서 Tamoxifen의 Antiestrogen 효과에 관한 연구 : I. 세포질 내 및 핵 내 Estradiol 수용체 농도의 변화에 관하여)

  • Lee, Hyo-jong;Jo, Choong-ho;Park, Moo-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.25 no.2
    • /
    • pp.187-195
    • /
    • 1985
  • The Present study has been carried out to elucidate the antiestrogenic effects of tamoxifen in uteri of immature rats. Immature female Sprague-Dawley rats were allocated into 4, groups and injected with $5{\mu}g$ of estradiol-$17{\beta}$, $50{\mu}g$ of tamoxifen, a combination of both or vehicle only subcutaneously three times after an interval of 24 hours respectively. The concentrations, of cytosol estradiol receptor in uterus were measured by DCC method before and 1, 3, 6, 12, 24, 48 and 72 hours after the above treatments and those of nuclear estradiol were measured by protamine exchange method 72 hours and those of nuclear estradiol were measured by protamine exchange method 72 hours after the above treatments. The results obtained were summarized as follows: 1. The binding affinity of tamoxifen to estradiol receptor in uterine cytosol was lower than that of estradiol-$17{\beta}$, accordingly the translocation of estradiol receptor into the nucleus was found to be delayed. 2. Tamoxifen caused the retention of estradiol receptor in nucleus over 24 hours and inhibited the replenishment of the receptor from nucleus to cytosol in uterus.

  • PDF

Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub-Fraction of Strobilanthes crispus and its Combination with Tamoxifen

  • Yaacob, Nik Soriani;Kamal, Nik Nursyazni Nik Mohamed;Wong, Kah Keng;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8135-8140
    • /
    • 2016
  • Background: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells. Materials and Methods: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle-related transcripts was analysed based on a previous microarray dataset. Results: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of $ER{\alpha}$ protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied. Conclusions: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

Synergistic Effects of Tamoxifen and Tranilast on VEGF and MMP-9 Regulation in Cultured Human Breast Cancer Cells

  • Darakhshan, Sara;Bidmeshkipour, Ali;Khazaei, Mozafar;Rabzia, Arezou;Ghanbari, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6869-6874
    • /
    • 2013
  • Background: Vascular endothelial growth factor and matrix metalloproteinases are two important factors for angiogenesis associated with breast cancer growth and progression. The present study was aimed to examine the effects of tamoxifen and tranilast drugs singly or in combination on proliferation of breast cancer cells and also to evaluate VEGF and MMP-9 expression and VEGF secretion levels. Materials and Methods: Human breast cancer cell lines, MCF-7 and MDA-MB-231, were treated with tamoxifen and/or tranilast alone or in combination and percentage cell survival and proliferative activity were evaluated using LDH leakage and MTT assays. mRNA expression and protein levels were examined by real-time RT-PCR and ELISA assay, respectively. Results: LDH and MTT assays showed that the combined treatment of tamoxifen and tranilast resulted in a significant decrease in cell viability and cell proliferation compared with tamoxifen or tranilast treatment alone, with significant decrease in VEGF mRNA and protein levels. We also found that tamoxifen as a single agent rarely increased MMP-9 expression. A decrease in MMP-9 expression was seen after treatment with tranilast alone and in the combined treatment MMP-9 mRNA level was decreased. Conclusions: This combination treatment can able to inhibit growth, proliferation and angiogenesis of breast cancer cells.

The Effect of Dimethyl Dimethoxy Biphenyl Dicarboxylate (DDB) against Tamoxifen-induced Liver Injury in Rats: DDB Use Is Curative or Protective

  • El-Beshbishy, Hesham A.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.300-306
    • /
    • 2005
  • Tamoxifen citrate is an anti-estrogenic drug used for the treatment of breast cancer. It showed a degree of hepatic carcinogenesis, when it used for long term as it can decrease the hexose monophosphate shunt and thereby increasing the incidence of oxidative stress in liver rat cells leading to liver injury. In this study, a model of liver injury in female rats was done by intraperitoneal injection of tamoxifen in a dose of 45 mg/kg body weight for 7 successive days. This model produced a state of oxidative stress accompanied with liver injury as noticed by significant declines in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) in a dose of 200 mg/kg body weight daily for 10 successive days, resulted in alleviation of the oxidative stress status of tamoxifen-intoxicated liver injury in rats as observed by significant increments in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases; sGPT and sGOT levels. The administration of DDB before tamoxifen intoxication (as protection) is more little effective than its curative effect against tamoxifen-induced liver injury. The data obtained from this study speculated that DDB can mediate its biochemical effects through the enhancement of the antioxidant enzyme activities and reduced glutathione level as well as decreasing lipid peroxides.

CYP2D6 Genotype and Risk of Recurrence in Tamoxifen Treated Breast Cancer Patients

  • Yazdi, Mohammad Forat;Rafieian, Shiva;Gholi-Nataj, Mohsen;Sheikhha, Mohammad Hasan;Nazari, Tahereh;Neamatzadeh, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6783-6787
    • /
    • 2015
  • Background: Despite consistent pharmacogenetic effects of CYP2D6 on tamoxifen exposure, there is considerable controversy regarding the validity of CYP2D6 as a predictor of tamoxifen outcome. Understanding the current state of evidence in this area and its limitations is important for the care of patients who require endocrine therapy for breast cancer. Materials and Methods: A total of 101 patients with breast cancer who received tamoxifen therapy for at least 3 years, were genotyped for common alleles of the CYP2D6 gene by nested-PCR and restriction fragment length polymorphism PCR. Patients were classified as extensive or poor metabolizers (PM) based on CYP2D6*4 alleles in 3 different groups according to the menopause, Her2-neu status, and stage 3. Results: The mean age of the patients with the disease recurrence was $50.8{\pm}6.4$ and in non recurrent patients was $48.2{\pm}6.8$. In this study 63.3% (n=64) patients were extensive metabolizers and 36.6% (n=37) were poor metabolizers. Sixty four of the 101 patients (63.3%) were Her2-neu positive. For tamoxifen-treated patients, no statistically significant difference in rate of recurrence observed between CYP2D6 metabolic variants in stage 3 and post-menopausal patients. However, there was a significant association between CYP2D6 genotype and recurrence in tamoxifen-treated Her2-neu positive patients. Compared with other women with breast cancer, those with Her2-neu positive breast cancer and extensive metabolizer alleles had a decreased likelihood of recurrence. Conclusions: This study for the first time demonstrated significant effects of CYP2D6 extensive metabolizer alleles on risk of recurrence in Her2-neu positive breast cancer patients receiving adjuvant tamoxifen therapy. Therefore, CYP2D6 metabolism, as measured by genetic variation, can be a predictor of breast cancer outcome in Her2-neu positive women receiving tamoxifen.

Fibronectin expression is upregulated by PI-3K/Akt activation in tamoxifen-resistant breast cancer cells

  • You, Daeun;Jung, Seung Pil;Jeong, Yisun;Bae, Soo Youn;Lee, Jeong Eon;Kim, Sangmin
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.615-620
    • /
    • 2017
  • Fibronectin (FN) plays important roles in the EMT in a variety of cancer cell types. However, the mechanism by which FN expression is regulated in tamoxifen-resistant (TamR) breast cancer cells has not yet been fully elucidated. Aberrant FN expression was associated with poor prognosis in patients with luminal type A breast cancer. In addition, FN was upregulated in TamR cells. To investigate the mechanism by which FN expression is regulated, we assessed the levels of phosphorylated Akt, JNK, and STAT3 and found that they were all increased in TamR cells. Induction of FN expression was dampened by LY294002 or AKT IV in TamR cells. Furthermore, FN expression was increased by constitutively active (CA)-Akt overexpression in tamoxifen-sensitive MCF7 (TamS) cells and colony formation of TamR cells was blocked by AKT IV treatment. Taken together, these results demonstrate that FN expression is upregulated through the PI-3K/Akt pathway in tamoxifen-resistant breast cancer cells.