• Title/Summary/Keyword: Tamhae II

Search Result 2, Processing Time 0.017 seconds

240 channel Marine Seismic Data Acquisition by Tamhae II (탐해2호의 240채널 해양탄성파 탐사자료취득)

  • Park Keun-Pil;Lee Ho-Young;Koo Nam-Hyung;Kim Kyeong-O;Kang Moo-Hee;Jang Seong-Hyung;Kim Young-Gun
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 1999
  • The 3-D seismic research vessel, Tamhae II, was built to raise up the probability of the hydrocarbon discovery in the Korean continental shelf and the first test survey was completed in the East Sea. During the survey, the 240 channel 2-D marine seismic data were acquired by the Korean flag vessel for the first time. Tamhae II has been equipped with source, receiver, recording equipment, and navigation equipment as well as an onboard processing system. The source is composed of four subarrays and each subarray has six airguns. Total airgun volume is 4578 $in^3$. The receiver consists of two sets of 3 km long 240 channel streamer. In the first survey, the successful acquisition of 2-D seismic data was accomplished. From the result of the data processing, we confirmed that the high quality seismic data were acquired. For the high quality data acquisition, technology of survey design and planning, operation of vessel and equipments and systematic quality control should be developed.

  • PDF

2-D/3-D Seismic Data Acquisition and Quality Control for Gas Hydrate Exploration in the Ulleung Basin (울릉분지 가스하이드레이트 2/3차원 탄성파 탐사자료 취득 및 품질관리)

  • Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • To identify the potential area of gas hydrate in the Ulleung Basin, 2-D and 3-D seismic surveys using R/V Tamhae II were conducted in 2005 and 2006. Seismic survey equipment consisted of navigation system, recording system, streamer cable and air-gun source. For reliable velocity analysis in a deep sea area where water depths are mostly greater than 1,000 m and the target depth is up to about 500 msec interval below the seafloor, 3-km-long streamer and 1,035 $in^3$ tuned air-gun array were used. During the survey, a suite of quality control operations including source signature analysis, 2-D brute stack, RMS noise analysis and FK analysis were performed. The source signature was calculated to verify its conformity to quality specification and the gun dropout test was carried out to examine signature changes due to a single air gun's failure. From the online quality analysis, we could conclude that the overall data quality was very good even though some seismic data were affected by swell noise, parity error, spike noise and current rip noise. Especially, by checking the result of data quality enhancement using FK filtering and missing trace restoration technique for the 3-D seismic data inevitably contaminated with current rip noises, the acquired data were accepted and the field survey could be conducted continuously. Even in survey areas where the acquired data would be unsuitable for quality specification, the marine seismic survey efficiency could be improved by showing the possibility of noise suppression through onboard data processing.