• 제목/요약/키워드: Tall timber building

검색결과 16건 처리시간 0.02초

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.

Mass Timber: The New Sustainable Choice for Tall Buildings

  • Cover, Jennifer
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.87-93
    • /
    • 2020
  • Professionals who work in the realm of tall building design and construction are well aware that high-rises are the best solution for accommodating growing urban populations. Until recently, few would have thought to include tall wood buildings as part of that solution, but there is growing awareness that tall mass timber structures can help satisfy the need for density while addressing the need-equally urgent-for a more sustainable built environment. This paper examines the trend toward tall wood buildings in the United States, including their history and international influences, market drivers, structural performance, and economic viability, as well as building code changes that allow wood structures up to 18 stories. It highlights examples of mass timber projects, with an emphasis on benefits that impact return on investment.

Pushing the Boundaries of Mass Timber Construction and Building Codes

  • Dubois, Jean-Marc;Frappier, Julie;Gallagher, Simon;Structures, Nordic
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.261-271
    • /
    • 2020
  • The 2020 National Building Code of Canada (NBC) and the 2021 International Building Code (IBC) both include Tall Wood Buildings (TWB) and are hailed as documents responsible for the proliferation of Mass Timber construction. Mass Timber construction is critical to reducing the carbon footprint of the construction industry; a sector acknowledged as being one of the greatest contributors of global annual CO2 emissions. Origine, a 13-storey multi-residential building erected in 2017 in a previously unsuitable site, is currently the tallest all-wood building in North America. This article describes the challenges overcome by the designers and client as they engaged with code officials, building authorities, and fire-service representatives to demonstrate the life-safety performance of this innovative building. It also traces the development of the "Guide for Mass Timber Buildings of up to 12 Storeys" published in Quebec and how it has enabled other significant Tall Wood projects across North America.

Haut - A 21-storey Tall Timber Residential Building

  • Verhaegh, Rob;Vola, Mathew;de Jong, Jorn
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.213-220
    • /
    • 2020
  • This paper reflects on the structural design of Haut; a 21-storey high-end residential development in Amsterdam, the Netherlands. Construction started in 2019 and is in progress at the time of writing. Upon completion in 2021, Haut will be the first residential building in the Netherlands to achieve a 'BREEAM-outstanding' classification. The building will reach a height of 73 m, making it the highest timber structure in the Netherlands. It contains some 14.500 ㎡ of predominantly residential functions. It features a hybrid concrete-timber stability system and concrete-timber floor panels. This paper describes the concepts behind the structural design for Haut and will touch upon the main challenges that have arisen from the specific combination of characteristics of the project. The paper describes the design of the stability system and -floor system, the analysis of differential movements between concrete and timber structures and wind vibrations. The paper aims to show how the design team has met these specific challenges by implementing a holistic design approach and integrating market knowledge at an early stage of the design.

Ascent - Challenges and Advances of Tall Mass Timber Construction

  • Fernandez, Alejandro;Komp, Jordan;Peronto, John
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.235-244
    • /
    • 2020
  • Ascent, a 25 story residential tower located in Milwaukee, WI (USA), will become the tallest timber building in the world upon completion. This paper discusses the project's structural system, permit process, groundbreaking project specific testing, and several of the challenges the team overcame, all of which open the door to future Mass Timber projects; particularly in the United States.

The Tall Frontier of Timber in Australia: Opportunities for Promotion Versus Industry Hurdles

  • Giorgio Marfella;Kimberly Winson-Geideman
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.137-143
    • /
    • 2023
  • The use of Engineered Wood Systems (EWS), especially mass-timber, as a structural alternative or complement to steel and concrete is gaining interest and acceptance across different sectors of architecture, engineering, and construction, including in high-rise buildings. Focussing on the Australian context, this study examines the levels of adoption and barriers to using timber as a primary structural material in multi-storey buildings. Data collected from semi-structured interviews with stakeholders at the forefront of adoption in structural design, construction, and property development indicates that timber in multi-storey projects in Australia still faces industry-wide challenges. Designers' awareness and attitudes towards timber adoption are generally positive and suitable for flagship projects, including tall buildings, but for enduring and widespread impact, long-term investment in education within and outside the range of stakeholders already committed to promoting timber adoption is needed.

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

Performance of Adhesives in Glulam after Short Term Fire Exposure

  • Quiquero, Hailey;Chorlton, Bronwyn;Gales, John
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.299-311
    • /
    • 2018
  • As engineered timber such as Glulam is seeing increasing use in tall timber buildings, building codes are adapting to allow for this. In order for this material to be used confidently and safely in one of these applications, there is a need to understand the effects that fire can have on an engineered timber structural member. The post-fire resilience aspect of glulam is studied herein. Two sets of experiments are performed to consider the validity of zero strength guidance with respect to short duration fire exposure on thin glulam members. Small scale samples were heated in a cone calorimeter to different fire severities. These samples illustrated significant strength loss but high variability despite controlled quantification of char layers. Large scale samples were heated locally using a controlled fuel fire in shear and moment locations along the length of the beam respectively. Additionally, reduced cross section samples were created by mechanically carving a way an area of cross section equal to the area lost to char on the heated beams. All of the samples were then loaded to failure in four-point (laterally restrained) bending tests. The beams that have been burnt in the shear region were observed as having a reduction in strength of up to 34.5% from the control beams. These test samples displayed relatively little variability, apart from beams that displayed material defects. The suite of testing indicated that zero strength guidance may be under conservative and may require increasing from 7 mm up to as much as 23 mm.

W350 - The Roadmap Of Super High-Rise Timber Building -

  • Harada, Hiroaki;Fukushima, Takashi;Hatori, Tatsuya;Aoyagi, Hajime
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.255-260
    • /
    • 2020
  • This research and technology development project is based on the concept and plan of Sumitomo Forestry Co., Ltd., and designed by Nikken Sekkei Ltd., and is aiming to realize 350 m supertall timber-framed buildings in urban areas by 2041, the 350 year anniversary of Sumitomo Forestry's founding(Fig. 1). By constructing office-based multi-use buildings which have 70 stories above ground with GFA of 455,000 ㎡, using a huge amount of timber of 185,000 ㎥, this project envisions to connect forests and cities, and to solve the problems in both of forests and cities. At the present stage, the main objective is to identify the issues related to wood, such as building structural systems, construction methods, materials used, and resource development, and to create a roadmap for future technologies to be researched and developed.