• Title/Summary/Keyword: Take-over Request

Search Result 22, Processing Time 0.017 seconds

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

Studies on the Utilization of Woodland for Livestock Farming II. Problem and Its Improvement Followed by the Join Cattle Grazing in king Won Do (임지의 축산적 이용에 관한 연구 제2보. 강원도의 새마을 "소" 임간공동방목사업의 문제점과 개선책)

  • 맹원재;윤익석;유제창;정승헌
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.3 no.2
    • /
    • pp.100-111
    • /
    • 1983
  • The research results reported herein had the objectives to understand and analyze the present problems of saemaeul woodland joint cattle grazing system in Kang Won Do and to take steps of improvement. The study results on actual management conditions, problems analyzed and improvement plan of total 208 joint cattle grazing area which was established 105 area in 1981 and 103 area in 1982 were summarized as follows: 1. the effectiveness of joint cattle grazing projects 1) Average daily weight gain of cattle during joint cattle grazing period was 0.4kg, showing higher daily than the conventional feeding of 0.33kg. 2) Increase of total farm income over the conventional feeding system were \1,031,357,320 during the grazing period from May to October in 1982 by adapting the 208 joint cattle grazing system, of which effectiveness of weight gain was \293,075,300 and labor saving was \543,838,750. 3) According to the results of questionaire investigation from 208 joint cattle grazing area, effectiveness of joint cattle grazing system over the conventional system were (1) labor saving, (2) feed cost saving, (3) reduced diseases, (4) increase of number of feeding, (5) inspiration of joint endeavor, (6) effect of more gain, (7) easiness of feeding and feed cost savings. 2. Problems of joint cattle grazing system. 1) Shortages of grass were a problem at second year of joint cattle grazing period due to the low regrowth rate of wild grass. 2) Proper land for woodland joint cattle grazing is belonging to land of Government ownership and it is very hard to get the permission from office of forestry for cattle grazing purpose. 3) It is also difficult to find a proper time of breeding in grazing area by the difficulty of estrus detection. 4) There are a difficulty to give a proper vaccination and medical examination for the grazing cattle. 3. Improvement plans for woodland joint cattle grazing projects. 1) Obtain sufficient roughages by hoof cultivation and oversowing pasture from the second year of joint cattle grazing period. 2) In order to increase the beef production and to use for a calf production area, Government should arrange that all proper grazing land of Government owned in Kang Won Do convert into woodland joint cattle grazing area. 3) Make a good reproductive record by mixed grazing with a excellent breeding cow in a remote area. And carry out the collective artificial insemination with synchronous puberty induced by injection of puberty stimulation hormone. 4) Make a preventive injection for blackleg, twice medication of fasciola hepatica in a year, and spray and medication of tick insecticide. 4. A policy towards upbringing of woodland joint cattle grazing area. 1) Government should thoroughly investigate about a proper land for woodland joint cattle grazing from all forests. 2) When the area is suitable for the woodland joint cattle grazing, though it is national forest or restricted area, government should make it possible to establish a grazing area. 3) On the proper land foe joint cattle grazing in the remote place, Government should support for the road construction and electric fence equipments by using of national funds. 4) There should be an administrative consideration for well promotion of the project that make woodland joint cattle grazing suitable to the characteristics of Kang Won Do. 5) In order to improve the reproduction record, Government should reform the insufficiency of artificial insemination in the joint cattle grazing area. 6) In order to maintain a proper price of cow, Government should carry out the price plan. 7) When there is any request for grassland formation in the woodland joint cattle grazing area, Government should permit it with preference.

  • PDF