• Title/Summary/Keyword: Taguchi technique

Search Result 111, Processing Time 0.028 seconds

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.

A Study on the Prediction Technique of Impact Dispersion Area for Flight Safety Analysis (비행안전분석을 위한 낙하분산영역 예측 기법에 대한 연구)

  • Choi, Kyu-Sung;Sim, Hyung-Seok;Ko, Jeong-Hwan;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • Flight safety analyses concerned with Launch Vehicle are performed to measure the risk to the people, ship and aircraft using impact point and impact dispersion area of debris generated by on-trajectory failures and malfunction turns. Predictions of impact point and impact dispersion area are essential for launch vehicle's flight safety analysis. Usually, impact dispersion area can be estimated in using Monte-Carlo simulation. However, Monte-Carlo method requires more several hundreds of iterative calculations which requires quite some time to produce impact dispersion area. Herein, we check the possibility of applying JU(Julier Uhlmann) transformation and Taguchi method instead of Monte-Carlo method and we propose a best method in terms of compuational time to produce impact dispersion area by comparing the results of the three methods.

Experimental Verification of Characteristics of Magnetic Abrasive Polishing Combined with Ultrasonic Vibration (실험계획법에 의한 초음파가 부가된 자기연마가공의 특성평가)

  • Jin, Dong-Hyun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.923-928
    • /
    • 2015
  • In this paper, we propose an ultrasonic magnetic abrasive polishing (US-MAP) technique to effectively machine a high-strength material, and we prove the efficiency of hybrid finishing. We use Taguchi's experimental method to determine the influence of each parameter. Based on the results, US-MAP exhibited a higher polishing efficiency than traditional MAP, and a suitable frequency for hybrid finishing was 28 kHz. When investigating the effect of the parameters on the surface roughness, the ultrasonic amplitude had the greatest effect. However, when machining with $55-{\mu}m$ amplitude, the machining efficiency decreased as the magnetic flux density varied.

A Study on Optimization of Injection-molded System Using CAE and Design of Experiment (CAE와 실험계획법을 연계한 사출 성형 시스템 최적화에 관한 연구)

  • Oh Jung-Yeol;Huh Yong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.271-277
    • /
    • 2006
  • Injection molding process is the manufacturing process that can obtain a high quality products in large quantity to a low cost. Since there are many input factors in every situation that can influence part's quality, the method is difficult to save the exact simulation data. Latest, it deals with the CAE method that supports the experiment, it is applied to the Design of Experiment for the optimum injection molding process. If there are many factors, the interaction among those factors must be considered by applying Design of Experiment which is taken from the technique of minimizing the number of experiment. Without a real test, it is taken the simulation data using $Moldflow^(R)$ software. $Moldflow^(R)$ is used for the analysis of injection molding process, it is analyzed the factors that affect a warpage using the Taguchi method and then the optimal injection molding process is obtained.

  • PDF

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

A Study on Design Sensitivity of Elastomeric O-ring Squeezed and Highly Pressurized Under Laterally One-sided Constrained Condition (단 측벽 구속하에서 압축 및 내압을 받는 고무 오링의 설계 민감도 연구)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2007
  • Static or dynamic elastomeric O-ring seals are installed between joining parts, and play key roles of high pressure-tightening. Sealing performance and structural safety of the O-ring are dependent on groove design, plain diameter, squeeze and applications such as pressure and temperature. In this study, to solve O-ring problem squeezed and highly pressurized under laterally one-sided constrained condition, hyperelastic FE analyses are performed, and FE results are compared with measured ones by computer-aided tomography, deformed shape and extrusion depth of the O-ring. Through the comparisons, FE analysis technique was verified. In order to evaluate design sensitivity, Taguchi method was used to select FE analysis cases. Adjustment parameters are clearance gap, groove comer radius, plain diameter and squeeze. By means of verified FE analysis technique, it has been analysed how the parameters have effects on contact stress fields, internal stress fields, and extrusion depths. Sealing performance has been evaluated based on contact stress fields and contact widths, and structural safety on internal stress and strain, extrusion lengths.

Shape Design Optimization of Disk Seal in $SF_6$ Gas Safety Valve ($SF_6$ 가스 안전밸브 디스크 시일의 최적설계에 관한 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2004
  • Sulfur Hexafluoride, S $F_{6}$ is widely used for leak detection and as a gaseous dielectric in transformers, condensers and circuit breakers. S $F_{6}$ gas is also effective as a cleanser in the semiconductor industry. This paper presents a numerical study of the sealing force of disk type seal in S $F_{6}$ gas safety valve. The sealing force on the disk seal is analyzed by the FEM method based on the Taguch's experimental design technique. Disk seals in S $F_{6}$ gas safety valve are designed with 9 design models based on 3 different contact length, compressive ratio and gas pressure. The calculated results of Cauchy stress and strain showed that the sealing characteristics of Teflon $^{ }$PTFE is more effective compared to that of FKM(Viton), which is related to the stiffness of the materials. And also, the contact length of the disk seal is important design parameter for sealing the S $F_{6}$ gas leakage in the safety valve.afety valve.

Initial Robust Design of Deadweight 150,000 ton Bulk Carrier (재화중량 150,000톤 산적화물선의 초기 로버스트 설계)

  • Koh, Chang-Doo;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.182-189
    • /
    • 1999
  • The robust design technology which can determine design variables getting best performance function with insensitivity to the environment noise, is an important method for improving the performance of products at low cost. Applying the robust design technology in ship design, Koh et al[10] introduced the planing hull design. This paper reports the application this technology to a 150K bulk carrier which has many design variables and shows that the robust design technology is superior to optimization technique in practical use.

  • PDF

The Effects of Processing Variables on Gas Penetration in Gas-Assisted Powder Injection Molding(GAPIM) (가스분말사출성형에서 공정조건 변화가 중공부 형성에 미치는 영향)

  • Kim, D.H.;Park, H.P.;Lee, K.H.;Cha, B.S.;Choi, J.H.;Rhee, B.O.;Tovar, Jorge A.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Gas-assisted injection molding(GAIM) produces parts with hollow internal sections. The technique offers benefits to powder injection molding(PIM), with lower material usage and reduced time for de-binding processes. In this study, the effects of processing parameters on gas penetration length of gas-assisted powder injection molding(GAPIM) were investigated for SUS316L stainless steel powder feedstock. Experiments were planned based on the Taguchi method, involving processing variables such as melt temperature, shot size, gas pressure, and gas delay time. The most significant parameters affecting gas penetration length were gas delay time and shot size, while the effects of melt temperature and gas pressure was relatively insignificant.

Optimum Design of the Heating Equipment by Influence of Wind Speed at Cryogenic Temperature (극저온에서 풍속의 영향에 따른 발열기자재의 최적설계)

  • Cho, Hyun Jun;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.463-479
    • /
    • 2020
  • Purpose: The purpose of this study is to evaluate the performance of heating equipments by implementing the extreme environment in which ships navigating the ice zone are exposed and to study and apply the experimental method to infer the optimized design for each factors. Methods: It is required to verify by analysis and experiment how the environment with low temperature and wind speed implemented through the test facility affects the heating walk-way and The optimum design of the heating walk-way in that extreme environment is derived using the Taguchi technique. Results: The results of this study are as follows; It was found the effect on the condition of each factor and derive optimized conditions that satisfy the performance condition of the heating walk-way in extreme use environment. Conclusion: Ships operating in Polar waters require reliable and durable facilities for all environments during sailing.