• Title/Summary/Keyword: Tactile hand

Search Result 96, Processing Time 0.03 seconds

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

Development of Tactile Sensor for Detecting Contact Force and Slip (접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발)

  • Choi Byung-June;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF

Event-related potentials reveal neural signatures of cross-modal interaction between visual and tactile stimulation (유발전위신호(ERP)를 통한 시각과 촉각 통합작용의 신경생리적 특징 분석)

  • Ju, Yu-Mi;Lee, Kyoung-Min
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2010.05a
    • /
    • pp.48-54
    • /
    • 2010
  • INTRODUCTION Interaction between temporal events at the millisecond level is important for visual and tactile interaction. OBJECT The aim of the present study is to identify any neural signature, as reflected in event-related potentials (ERP), for the integrative processes when the two sensory modalities are stimulated in synchrony as opposed to when they are stimulated separately. METHOD The basic strategy was to compare ERP signals obtained with simultaneous visual and tactile stimulation with a linear summation of ERP patterns obtained with each modality stimulated separately. Condition were presented, paired with various stimulus-onset-asynchronies (SOA) ranging from - 300 ms (tactile-first) to 300 ms (visual-first), and in trials where only one modality was stimulated alone. RESULT A positive deviation was located in observed ERP at C4 electrode (contralateral to the stimulated hand) at 200-400 ms, in comparison to the predicted ERP. The deviation was present at all SOAs other than -300ms (tactile-first) and 300 ms (visual-first). There was also a positive deviation at occipital leads at the 50-ms SOA (visual-first) trials. DISCUSSION It suggested that neural signatures of cross-modal integration occur within a limited time-window. The deviations were specifically localized at the contralateral somatosensory and visual cortices, indicating that the integration happens at or before the level of the primary cortices.

  • PDF

Design and Theoretic Analysis of 3D Tactile Sensor (3D 촉각 센서의 설계와 이론적인 해석)

  • Sim Kwee-Bo;Hwang Han-Kun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.870-874
    • /
    • 2005
  • This paper presents capacitive tactile sensor that can detect normal and shear forces. This tactile sensor consists of index plate, sensing plate, and elastic dielectric layer. The calculated sensing character is based on the changes of space between two horizontal plate. Larger overlap areas and narrow space between top and bottom plate guarantees higher sensitivity. Tactile sense information can be calculated from the changes of phase of output signal. The symmetric arrangement of sensing plates makes the manufacturing process easier and guarantees the stability of the structure. In this paper, the sensor structure is designed, the mechanism of the Proposed sensor is theoretically explained, and the simulated result is presented.

Anthropomorphic Robot Hand: Gifu Hand III

  • Jung, Kwang-Mok;Lee, Sang-Won;Kwak, Jong-won;Kim, Hun-Mo;Nam, Jae-Do;Jeon, Jae-Wook;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.6-78
    • /
    • 2002
  • $\textbullet$ The Gifu Hand III is a 5-fingered hand driven by built-in servomotors and has 20 joints with 10 DOF. $\textbullet$ The backlash of transmission, the mobility space, and the opposability of the thumb are improved. $\textbullet$ The new distributed tactile sensor with 859 detecting points is mounted on the hand surface. $\textbullet$ Experiments of grasping objects by a grasping strategy imitating human grasping reflex are shown.

  • PDF

Clinical Study on the Relations of the Refineness and the Tactile of Back Skin of the Hand to Sasang Constitutions depending on sex and age (연령 및 성별에 따른 사상체질별 손등 피부의 조직 세밀도 및 감촉 특성에 대한 임상 연구)

  • Lee, Su-Heon;Joo, Jong-Cheon;Yoon, Yoo-Sik;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.536-543
    • /
    • 2005
  • We statistically analyzed the relationship between the constitution and the refineness and tactile of skin depending on sex and age, using 1079 clinical data registered to SCIB(Sasang constitution Information Bank), and the following results are obtained: The thickness of skin has big discrimination ability in classification of Taeeumin and Soyangin, especially in women and in ages 21 or more. The stiffness of skin also has big discrimination ability in classification of Taeeumin and Soeumin, especially in Taeumin women and Soeumin man and in ages 21-60. The differences stated above have been proved to be meaningful enough by Chi-square test.

Evaluation of Texture Image and Preference to Men's Suit Fabrics according to Mechanical Properties, Hand and Fabric Information of Wool Blended Fabrics (모 혼방직물의 역학적 특성과 태 및 소재 정보에 따른 남성 정장용 소재의 질감이미지와 선호도 평가)

  • Kim, Hee Sook;Na, Mi Hee
    • Korean Journal of Human Ecology
    • /
    • v.23 no.2
    • /
    • pp.317-328
    • /
    • 2014
  • In this study, differences of texture image and preference for men's suit fabrics according to mechanical properties, hand and fabric information were investigated. 55 subjects evaluated texture image and preference of 12 kinds of wool blended fabrics. For statistical analysis, t-test and pearson correlation coefficients were used. The results were as follows: Most of mechanical properties effected on texture images, and bending property and shearing property were effected on tactile preference and purchasing preference. For hand, objective hand values showed correlations with subjective texture images and preferences, but THV had almost no correlations. In sensory images according to presence of fabric information, fabrics were evaluated thinner, lighter, more pliable and smooth by cognition of wool blending ratio. For sensibility images, fabrics were evaluated more refined, intellectual, dignified and less practicable after recognize of wool blending ratio. In preferences, tactile preference was increased and purchasing preference was decreased after recognize fabric information. Therefore, significant differences of texture image and preference were observed according to presence of fabric information.

Development of Polymer Slip Tactile Sensor Using Relative Displacement of Separation Layer (분리층의 상대 변위를 이용한 고분자 미끄럼 촉각 센서 개발)

  • Kim, Sung-Joon;Choi, Jae-Young;Moon, Hyung-Pil;Choi, Hyouk-Ryeol;Koo, Ja-Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.100-107
    • /
    • 2016
  • To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF