• Title/Summary/Keyword: Tactical Task

Search Result 12, Processing Time 0.016 seconds

A Study on the Characteristic Method of Wearable Robot by Mission Profile (임무유형별 착용로봇 특성화 방안 연구)

  • Dowan Cha;Kyungtaek Lee;Joongeup Kye
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.444-455
    • /
    • 2023
  • In this report, a specialization plan for wearable robots by mission profile was investigated and analyzed to derive an application plan. The final goal of this study was to derive the operating requirements of wearable robots according to specialized plans, and to conduct a specialized study on wearable robots by mission profile through investigation/analysis of specialized plans for each mission profile. In the study, 1) Research on technology trends related to military wearable robots such as patents and papers, 2) Research/analysis of mission profiles to characterize wearable robots, 3) Analysis of wearable robot specialization plans according to mission profiles, and 4) Requirements for wearable robot operation were derived. In the first time of the study, a survey on technology trends related to wearable robots for soldiers such as patents and papers was completed, and a military consultative body was conducted to derive measures to characterize wearable robots. In addition, a survey was conducted on mission profiles, and the second time study derived Key Performance Parameters (KPP) for operational performance, core performance, and system performance based on scenarios by mission profile. However, it is revealed that the KPP derived from the research results was not covered in this paper because it was judged that more in-depth research was needed prior to disclosure. In order to prepare for future battlefield situations and increase the usability of wearable robots, this study was conducted to characterize wearable robots by considering the characteristics of soldiers' equipment according to mission profiles and to characterize wearable robots by mission profile.

Simulation and Analysis of Response Plans against Chemical and Biological Hazards (화학 생물 위험 대응 시뮬레이션 및 분석)

  • Han, Sangwoo;Seo, Jiyun;Shim, Woosup
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.49-64
    • /
    • 2021
  • M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.