A typical statistical parametric speech synthesis (text-to-speech, TTS) system consists of separate modules, such as a text analysis module, an acoustic modeling module, and a speech synthesis module. This causes two problems: 1) expert knowledge of each module is required, and 2) errors generated in each module accumulate passing through each module. An end-to-end TTS system could avoid such problems by synthesizing voice signals directly from an input string. In this study, we implemented an end-to-end Korean TTS system using Google's Tacotron, which is an end-to-end TTS system based on a sequence-to-sequence model with attention mechanism. We used 4392 utterances spoken by a Korean female speaker, an amount that corresponds to 37% of the dataset Google used for training Tacotron. Our system obtained mean opinion score (MOS) 2.98 and degradation mean opinion score (DMOS) 3.25. We will discuss the factors which affected training of the system. Experiments demonstrate that the post-processing network needs to be designed considering output language and input characters and that according to the amount of training data, the maximum value of n for n-grams modeled by the encoder should be small enough.
Autoregressive한 TTS 모델은 불안정성과 속도 저하라는 본질적인 문제를 안고 있다. 모델이 time step t의 데이터를 잘못 예측했을 때, 그 뒤의 데이터도 모두 잘못 예측하는 것이 불안정성 문제이다. 음성 출력 속도 저하 문제는 모델이 time step t의 데이터를 예측하려면 time step 1부터 t-1까지의 예측이 선행해야 한다는 조건에서 발생한다. 본 연구는 autoregression이 야기하는 문제의 대안으로 end-to-end non-autoregressive 가속 TTS 모델을 제안한다. 본 연구의 모델은 Tacotron 2 - WaveNet 모델과 근사한 MOS, 더 높은 안정성 및 출력 속도를 보였다. 본 연구는 제안한 모델을 토대로 non-autoregressive한 TTS 모델 개선에 시사점을 제공하고자 한다.
최근 인공지능 스피커 시장이 성장하면서 사용자와 자연스러운 대화가 가능한 음성합성 기술에 대한 수요가 증가하고 있다. 따라서 다양한 음색의 목소리를 생성할 수 있는 다화자 음성합성 시스템이 필요하다. 자연스러운 음성을 합성하기 위해서는 대용량의 고품질 음성 DB로 학습하는 것이 요구된다. 그러나 많은 화자가 발화한 고품질의 대용량 음성 DB를 수집하는 것은 녹음 시간과 비용 측면에서 매우 어려운 일이다. 따라서 각 화자별로는 소량의 학습 데이터이지만 매우 많은 화자의 음성 DB를 사용하여 음성합성 시스템을 학습하고, 이로부터 다화자의 음색과 운율 등을 자연스럽게 표현하는 기술이 필요하다. 본 논문에서는 화자인식 기술에서 사용하는 딥러닝 기반 x-vector 기법을 적용하여 화자 인코더를 구성하고, 화자 인코더를 통해 소량의 데이터로 새로운 화자의 음색을 합성하는 기술을 제안한다. 다화자 음성합성 시스템에서 텍스트 입력에서 멜-스펙트로그램을 합성하는 모듈은 Tacotron2로, 합성음을 생성하는 보코더는 로지스틱 혼합 분포가 적용된 WaveNet으로 구성되어 있다. 학습된 화자 임베딩 신경망에서 추출한 x-vector를 Tacotron2에 입력으로 추가하여 원하는 화자의 음색을 표현한다.
현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 여전히 운전자의 주의를 필요로 한다. 3레벨 자율주행 이후 4레벨 자율주행차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 운전자의 부주의까지 포함하여 자율주행을 실시해야 하기 때문이다. 따라서 본 논문에서는 운전자가 부주의한 상황에서 긴급상황을 알리고 운전자의 반응을 인식하는 자율차량 안전을 위한 긴급상황 알림 및 운전자 반응 확인 시스템을 제안한다. 긴급상황 알림 및 운전자 반응 확인 시스템은 긴급상황 전달 모듈을 사용하여 긴급상황을 텍스트화하여 운전자에게 음성으로 전달하며 운전자 반응 확인 모듈을 사용하여 긴급상황에 대한 운전자의 반응을 인식하고 운전 권한을 운전자에게 넘길지 결정한다. 실험 결과, 긴급상황 전달 모듈의 HMM은 RNN보다 25%, LSTM보다 42.86% 빠른 속도로 음성을 학습했다. 운전자 반응 확인 모듈의 Tacotron2는 deep voice보다 약 20ms, deep mind 보다 약 50ms 더 빨리 텍스트를 음성으로 변환했다. 따라서 긴급상황 알림 및 운전자 반응 확인 시스템은 효율적으로 신경망 모델을 학습시키고, 실시간으로 운전자의 반응을 확인할 수 있다.
인공신경망에 기반한 대부분의 음성 합성 모델은 고음질의 자연스러운 발화를 생성하기 위해 보코더 모델을 사용한다. 보코더 모델은 멜 스펙트로그램 예측 모델과 결합하여 멜 스펙트로그램을 음성으로 변환한다. 그러나 보코더 모델을 사용할 경우에는 많은 양의 컴퓨터 메모리와 훈련 시간이 필요하며, GPU가 제공되지 않는 실제 서비스 환경에서 음성 합성이 오래 걸린다는 단점이 있다. 기존의 선형 스펙트로그램 예측 모델에서는 보코더 모델을 사용하지 않으므로 이 문제가 발생하지 않지만, 대신에 고품질의 음성을 생성하지 못한다. 본 논문은 뉴럴넷 기반 보코더를 사용하지 않으면서도 양질의 음성을 생성하는 Tacotron 2 & Transformer 기반의 선형 스펙트로그램 예측 모델을 제시한다. 본 모델의 성능과 속도 측정 실험을 진행한 결과, 보코더 기반 모델에 비해 성능과 속도 면에서 조금 더 우세한 점을 보였으며, 따라서 고품질의 음성을 빠른 속도로 생성하는 음성 합성 모델 연구의 발판 역할을 할 것으로 기대한다.
본 논문은 AI 기술을 기반으로 텍스트 스크립트를 자동으로 인식하고 영상 합성 기술을 응용하여 텍스트 정보를 시각화하는 AI 아나운서 소프트웨어 연구에 대하여 기술한다. 기존의 AI 기반 영상 정보 전달 서비스인 AI 앵커는 텍스트를 인식하여 영상을 합성하는데 오랜 시간이 필요하였으며, 특정 인물 이미지로만 영상 합성이 가능했기 때문에 그 용도가 제한적이었다. 본 연구에서 제안하는 방법은 Tacotron 으로 새로운 음성을 학습 및 합성하여, LRW 데이터셋으로 학습된 모델을 사용하여 자연스러운 영상 합성 체계를 구축한다. 단순한 얼굴 이미지의 합성을 개선하고 다채로운 이미지 제작을 위한 과정을 간략화하여 다양한 비대면 영상 정보 제공 환경을 구성할 수 있을 것으로 기대된다.
기존의 TTS 시스템은 텍스트 전처리, 구문 분석, 발음표기 변환, 경계 분석, 운율 조절, 음향 모델에 의한 음향 특징 생성, 합성음 생성 등 여러 모듈로 구성되어 있다. 그러나 딥러닝 기반 TTS 시스템은 텍스트에서 스펙트로그램을 생성하는 Text2Mel 과정과 스펙트로그램에서 음성신호을 합성하는 보코더로 구성된다. 본 논문에서는 최적의 한국어 TTS 시스템 구성을 위해 Tex2Mel 과정에는 Tacotron2를 적용하고, 보코더로는 WaveNet, WaveRNN, WaveGlow를 소개하고 이를 구현하여 성능을 비교 검증한다. 실험 결과, WaveNet은 MOS가 가장 높으며 학습 모델 크기가 수백 MB이고 합성시간이 실시간의 50배 정도라는 결과가 나왔다. WaveRNN은 WaveNet과 유사한 MOS 성능을 보여주며 모델 크기가 수십 MB 단위이고 실시간 처리는 어렵다는 결과가 도출됐다. WaveGlow는 실시간 처리가 가능한 방법이며 모델 크기가 수 GB이고 MOS가 세 방식 중에서 가장 떨어진다는 결과를 보여주었다. 본 논문에서는 이러한 연구 결과로부터 TTS 시스템을 적용하는 분야의 하드웨어 환경에 맞춰 적합한 방식을 선정할 수 있는 참고 기준을 제시한다.
본 논문은 매핑 되지 않은 입력 음성과 목표음성 사이에 음성 변환하는 비 병렬 음성 변환 네트워크를 제안한다. 기존 음성 변환 연구에서는 변환 전후 스펙트로그램의 거리 오차를 최소화하는 방법을 주로 학습 한다. 이러한 방법은 MSE의 이미지를 평균 내는 특징으로 인하여 생성된 스펙트로그램의 해상도가 저하되는 문제점이 있었다. 또한, 병렬 데이터를 사용해 연구를 진행했기 때문에 데이터를 수집하는 것에도 어려움이 많았다. 본 논문에서는 입력 음성의 발음 PPGs를 사용하여 비 병렬 데이터 간 학습을 진행 하며, GAN 학습을 통해 더욱 선명한 음성을 생성하는 방법을 사용하였다. 제안한 방법의 유효성을 검증하기 위해서 기존 음성 변환 시스템에서 많이 사용하는 GMM 기반 모델과 MOS 테스트를 진행하였으며 기존 모델에 비하여 성능이 향상되는 결과를 얻었다.
최근 수중표적의 저소음화와 해상교통량의 증가로 인한 주변 소음의 증가로 능동 소나 시스템의 중요성이 증대되고 있다. 하지만 신호의 다중 경로를 통한 전파, 다양한 클러터와 주변 소음 및 잔향 등으로 인한 반향신호의 낮은 신호대잡음비는 능동 소나를 통한 수중 표적 식별을 어렵게 만든다. 최근 수중 표적 식별 시스템의 성능을 향상 시키기 위해 머신러닝 혹은 딥러닝과 같은 데이터 기반의 방법을 적용시키려는 시도가 있지만, 소나 데이터셋의 특성 상 훈련에 충분한 데이터를 모으는 것이 어렵다. 부족한 능동 소나 데이터를 보완하기 위해 수학적 모델링에 기반한 방법이 주로 활용되어오고 있다. 그러나 수학적 모델링에 기반한 방법론은 복잡한 수중 현상을 정확하게 모의하는 데에는 한계가 있다. 따라서 본 논문에서는 심층 신경망 기반의 소나 신호 합성 기법을 제안한다. 제안하는 방법은 인공지능 모델을 소나 신호 합성 분야에 적용하기 위해, 음성 합성 분야에서 주로 사용되는 타코트론 모델의 주요 모듈인 주의도 기반의 인코더 및 디코더를 소나 신호에 적절하게 수정하였다. 실제 해상 환경에 모의 표적기를 배치해 수집한 데이터셋을 사용하여 제안하는 모델을 훈련시킴으로써 보다 실제 신호와 유사한 신호를 합성해낼 수 있게 된다. 제안된 방법의 성능을 검증하기 위해, 합성된 음파 신호의 스펙트럼을 직접 분석을 진행하여 비교하였으며, 이를 바탕으로 오디오 품질 인지적 평가(Perceptual Quality of Audio Quality, PEAQ)인지적 성능 검사를 실시하여 총 4개의 서로 다른 환경에서 생성된 반사 신호들에 대해 원본과 비교해 그 차이가 최소 -2.3이내의 높은 성적을 보여주었다. 이는 본 논문에서 제안한 방법으로 생성한 능동 소나 신호가 보다 실제 신호에 근사한다는 것을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.