• Title/Summary/Keyword: Table of orthogonal array

Search Result 73, Processing Time 0.025 seconds

Development of Fuzzy Control Algorithm for Multi-Objective Problem using Orthogonal Array and its Applications (직교배열표를 이용한 다목적 퍼지제어 알고리즘 개발 및 응용)

  • 김추호;박성호;이종원;변중남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.63-68
    • /
    • 2000
  • In this paper, a control algorithm suitable for multi-objective control problems is proposed based on the orthogonal array which is normally used in statistics and industrial engineering. And a newly defined Nth-certainty factor is suggested, which can effectively exclude the less confident rules. The Nth-certainty factor is defined by the F-values of the ANOVA(analysis of variance) table. It is shown that the algorithm can be successfully adopted to the design of controller for an active magnetic bearing system.

  • PDF

A Study on Performance Improvement of Diaphgram for Micro Speaker using Table of Orthogonal Array (직교배열표를 이용한 마이크로 스피커용 다이아프램의 성능개선에 관한 연구)

  • 홍도관;우병철;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.162-165
    • /
    • 2004
  • On this study, we improved diaphgram for micro speaker performance using Taguchi method in discrete design space. The design of diaphgram has an effect on performance of micro speaker such as, thickness of diaphgram, shape of diaphgram, etc. Therefore this study carried to decide shape of diaphgram and thickness of diaphgram for minimizing 2nd natural frequency of diaphgram using Taguchi method. we showed improved design factors that minimized 2nd natural frequency of diaphgram. Also, 2nd natural frequency of diaphgram for micro speaker is reduced up to 37 percent maintaining twist mode shape. From the results of ANOVA, 2nd natural frequency of diaphgram for micro speaker have an effect on position of the outer curved shape and thickness of diaphgram.

  • PDF

Optimum Design of Transverse Flux Linear Motor for Maximizing Thrust Force (추력을 최대화하기 위한 횡자속 선형전동기의 최적설계)

  • Hong, D.K.;Woo, B.C.;Kang, D.H.;Jang, J.W.;Kim, J.M.;Park, G.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1159-1161
    • /
    • 2005
  • This study uses a design of experiments to explain correlations between the objective function and design variables. Analysis of means, analysis of variance and table of orthogonal array were carried out. The change of shape design variable for TFLM based on the table of orthogonal array is made. Therefore this study carried to decide design variables for maximizing thrust force of TFLM. we showed improved design variables.

  • PDF

Determination of Optimal Process Condition for the Precision Blanking of Lend Frame (리드프레임 타발 공정의 최적 전단 조건의 선정)

  • Suh E. K.;Lim S. H.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.71-74
    • /
    • 2001
  • Using the Taguchi method, optimum process condition of lead frame blanking has been determined in the point of view of shape of blanked profile. As the main process parameters, clearance, strip holding pressure and bridge width are selected. According to the orthogonal array table, three levels of experiment have been carried out for each factors. The optimal blanking condition is analyzed with the SN ratio. It has been verified that the optimal process condition can be determined with a combination of basic blanking experiment and experiment design method. Both the effect of each factors and gain can be judged in the quantitative manners from the analysis of SN ratio.

  • PDF

A Study on the Characteristics of the Precision Blanking of Lead Frame (II): Determination of Optimal Process Condition (리드 프레임 타발공정의 전단특성에 관한 연구(II) - 최적 전단 조건의 선정)

  • 서의권;임상헌;심현보
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.132-137
    • /
    • 2002
  • Using the Taguchi method, optimum process condition of lead frame blanking has been determined in the point of view of shape of blanked profile. As the main process parameters, clearance, strip holding pressure and bridge width are selected. According to the orthogonal array table, three levels of experiment have been carried out for each factor. The optimal blanking condition is analyzed with the SN ratio. It has been verified that the optimal Process condition can be determined with a combination of basic blanking experiment and experiment design method. Both the effect of each factor and gain can be judged in the quantitative manner from the analysis of SN ratio.

Study on the dynamic stiffness variation of boring bar by Taguchi Method (다구찌 방법을 이용한 보링바의 동강성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.98-104
    • /
    • 2009
  • The objective of this paper is to investigate the effect of factors on the dynamic stiffness variation of boring bar. The experiment was carried out by Taguchi Method and Orthogonal array table. The results indicate that overhang was found out to be dominant factor with 95% confident intervals and feed rate and depth of cut were insignificant. In addition, analysis of loss function shows that loss value increased sharply from 3D to 4D(D is a shank diameter). Consequently, there is critical point which changes property of dynamic stiffness.

  • PDF

Optimum Working Condition of Side Wall End Milling Using Response Surface Methodology (측벽 엔드밀 가공 시 반응표면법을 이용한 최적 가공조건)

  • Hong, Do-Kwan;Choi, Jae-Gi;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1097-1104
    • /
    • 2008
  • Working condition is one of the most important factors in precision working. In this study, we optimized the vibration acceleration of working progress direction using RSM(response surface methodology) by table of orthogonal array. RSM was well adapted to make analytic model for minimizing vibration acceleration, created the objective function and saved a great deal of computational time. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of working condition. The experimental results of the surface roughness and vibration acceleration showed the validity of the proposed working condition of side wall end-milling as it can be observed.

Robust Optimization Design of Overhead Crane with Constraint using the Characteristic Functions (특성함수를 이용한 제한조건이 있는 천장크레인의 강건최적설계)

  • 홍도관;최석창;안찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for the mixed result of the structural analysis, the buckling analysis and the table of orthogonal array according to the original overhead crane's dimensional change. About the above two functions, the effectiveness of design change according to the change of design parameters could be estimated. Also, the overhead crane's weight is reduced up to 10.55 percent maintaining the structural stability according to the thickness of plate.

The Robust Design with Column Merging Method for the Optimal Design of Low Noise Intake System (강건설계와 열합병법을 이용한 세분화한 흡기계 저소음 최적설계)

  • 오재응;차경준;한정순;박영선;진정언
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.773-784
    • /
    • 2002
  • This paper proposes an optimal design to improve the performance of the intake system by reducing the noise. We adapt the Taguchi method and column merging method for the above design. At the first stage of the design, the length and radius of each component of the current intake system are selected as control factors. Then the $L^{18}$ table of orthogonal array is used to get the effective main factors. At the second stage, the $L^{16}$ table of orthogonal array and the column merging method is combined to analyze subdivided significant factors. We know that the robust design with the column merging method provides better design for noise of intake system than the robust design itself.

The Optimum Design for Low Noise Intake System using Robust Design (강건설계를 이용한 흡기계의 저소음화 최적설계)

  • Oh, Jae-Eung;Cha, Kyung-Joon;Chin, Chung-Un;Choe, Ick-Sung;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1654-1660
    • /
    • 2000
  • Recently, the regulations from the government and the concerns of people give rise to the interest in exhaust and intake noise of passenger car as much as other vehicles. In these demands, performance prediction software was developed in the previous study. In this study, Robust design was used for improving the noise reduction capacity of intake system with the performance prediction software. On the basis of the existing design, length and radius of each component that was thought to effect to capacity of intake system was selected. At first factors are arranged by using $L_{18}$ table of orthogonal array and then optimum value can be obtained by $L_{16}$ table of orthogonal array.

  • PDF