• Title/Summary/Keyword: Ta2O5 film

Search Result 156, Processing Time 0.022 seconds

Preparation of a Bi$_{4}$Ti$_{3}$O$_{12}$ Thin Film and Its Electrical Properties (Bi$_{4}$Ti$_{3}$O$_{12}$ 박막의 제작과 그 특성에 관한 연구)

  • Gang, Seong-Jun;Jang, Dong-Hun;Min, Gyeong-Jin;Kim, Seong-Jin;Jeong, Yang-Hui;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.7-14
    • /
    • 2000
  • A Bi$_{4}$Ti$_{3}$O$_{12}$ (BIT) thin film is prepared by sol-gel method using acetate precursors and evaluated whether it could be applied to NVFRAM (Non-Volatile Ferroelectric RAM). The drying and the annealing temperature are 40$0^{\circ}C$ and $650^{\circ}C$, respectively and they are determined from the DT-TG (Differential Thermal-Thermal Gravimetric) analysis. The BIT thin film deposited on Pt/Ta/SiO$_{2}$/Si substrate shows orthorhombic perovskite phase. The grain size and the surface roughness are about 100 nm and 70.2$\AA$, respectively. The dielectric constant and the loss tangent at 10 KHz are 176 and 0.038, respectively, and the leakage current density at 100 ㎸/cm is 4.71 $mutextrm{A}$/$\textrm{cm}^2$. In the results of hysteresis loops measured at $\pm$250 ㎸/cm, the remanent polarization (Pt) and the coercive field (Ec) are 5.92 $\mu$C/$\textrm{cm}^2$ and 86.3 ㎸/cm, respectively. After applying 10$^{9}$ square pulses of $\pm$5V, the remanent polarization of the BIT thin film decreases as much as about 33% from 5.92 $\mu$C/$\textrm{cm}^2$ of initial state to 3.95 $\mu$C/$\textrm{cm}^2$.

  • PDF

Effect of electrode structure on electrical properties of thin film diode (박막 다이오드의 전기적 특성에 미치는 전극 구조의 영향)

  • Hong, Sung-Jei;Lee, Chan-Jae;Kim, Won-Keun;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.73-76
    • /
    • 2002
  • 박막 다이오드의 전기적 특성에 미치는 전극 구조의 영향을 관찰하였다. 박막 다이오드는 하부전극-절연층($Ta_{2}O_{5}$)-상부전극의 3층 구조로 설계 및 제작하였고, 하부 전극으로 Ta, 상부 전극으로 Cr 및 Ti를 각각 사용하였다. Cr을 상부 전극으로 사용한 결과 비대칭비가 1.8인 높은 비대칭 특성을 나타내었다. 그러나 Ti 상부 전극의 경우 반대의 경향을 나타내었다. 이들을 각각 $150^{\circ}C$에서 열처리한 결과 Cr 상부 전극 다이오드는 비대칭비가 1.4로 여전히 비대칭 경향을 나타내었으나, Ti 상부 전극의 박막 다이오드는 비대칭비가 1.1로 대칭에 가까운 우수한 특성을 나타내었다.

  • PDF

Self-patterning Technique of Photosensitive La0.5Sr0.5CoO3 Electrode on Ferroelectric Sr0.9Bi2.1Ta2O9 Thin Films

  • Lim, Jong-Chun;Lim, Tae-Young;Auh, Keun-Ho;Park, Won-Kyu;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • $La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrodes were prepared on ferroelectric $Sr_{0.9}Bi_{2.1}Ta_2O_9$(SBT) thin films by spin coating method using photosensitive sol-gel solution. Self-patterning technique of photosensitive sol-gel solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. Lanthanum(III) 2-methoxyethoxide, Stronitium diethoxide. Cobalu(II)2-methoxyethoxide were used as starting materials for LSCO electrode. UV irradiation on LSCO thin films lead to decrease solubility by M-O-M bond formation and the solubility difference allows us to obtain self-patternine. There was little composition change of the LSCO thin films between before leaching and after leaching in 2-methoxyethanol. The lowest resistivity of LSCO thin films deposited on $SiO_2$/Si substrate was $1.1{\times}10^{-2}{\Omega}cm$ when the thin film was ennealed at $740^{\circ}C$. The values of Pr/Ps and 2Pr of LSCO/SBT/Pt capacitor on the applied voltage of 5V were 0.51, 8.89 ${\mu}C/cm^2$, respectively.

Effects of the Introduction of UV Irradiation and Rapid Thermal Annealing Process to Sol-Gel Method Derived Ferroelectric Sr0.9Bi2.1Ta1.8Nb0.2O9 Thin Films on Crystallization and Dielectric/Electrical Properties (UV 노광과 RTA 공정의 도입이 Sol-Gel 법으로 제조한 강유전성 Sr0.9Bi2.1Ta1.8Nb0.2O9 박막의 결정성 및 유전/전기적 특성에 미치는 영향)

  • 김영준;강동균;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • The ferroelectric SBT thin films as a material of capacitors for non-volatile FRAMs have some problems that its remanent polarization value is relatively low and the crystallization temperature is quite high abovc 80$0^{\circ}C$. Therefore, in this paper, SBTN solution with S $r_{0.9}$B $i_{2.1}$T $a_{1.8}$N $b_{0.2}$$O_{9}$ composition was synthesized by sol-gel method. Sr(O $C_2$ $H_{5}$)$_2$, Bi(TMHD)$_3$, Ta(O $C_2$ $H_{5}$)$_{5}$and Nb(O $C_2$ $H_{5}$)$_{5}$ were used as precursors, which were dissolved in 2-methoxyethanol. SBTN thin films with 200 nm thickness were deposited on Pt/Ti $O_2$/ $SiO_2$/Si substrates by spin-coating. UV-irradiation in a power of 200 W for 10 min and rapid thermal annealing in a 5-Torr-oxygen ambient at 76$0^{\circ}C$ for 60 sec were used to promote crystallization. The films were well crystallized and fine-grained after annealing at $650^{\circ}C$ in oxygen ambient. The electrical characteristics of 2Pr=11.94 $\mu$C/$\textrm{cm}^2$, Ps+/Pr+=0.54 at the applied voltage of 5 V were obtained for a 200-nm-thick SBTN films. This results show that 2Pr values of the UV irradiated and rapid thermal annealed SBTN thin films at the applied voltage of 5 V were about 57% higher than those of no additional processed SBTN thin films. thin films.lms.s.s.

A Study on the Design and Characteristics of thin-film L-C Band Pass Filter

  • Kim In-Sung;Song Jae-Sung;Min Bok-Ki;Lee Won-Jae;Muller Alexandru
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.176-179
    • /
    • 2005
  • The increasing demand for high density packaging technologies and the evolution to mixed digital and analogue devices has been the con-set of increasing research in thin film multi-layer technologies such as the passive components integration technology. In this paper, Cu and TaO thin film with RF sputtering was deposited for spiral inductor and MOM capacitor on the $SiO_2$/Si(100) substrate. MOM capacitor and spiral inductor were fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, important devices for mobile communication system. Based on the high-Q values of passive components, MOM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and 5 dB for a 900 MHz filter. This paper also discusses a analysis and practical design to thin-film L-C band pass filter.

Thickness effect on the ferroelectric properties of SBT thin films fabricated by LSMCD process (LSMCD공정으로 제조한 SBT 박막의 두께에 따른 강유전 특성)

  • 박주동;권용욱;연대중;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.231-237
    • /
    • 1999
  • $SrBi_{22.4}Ta_2O_9$ (SBT) thin films of 70~150 nm thickness were prepared on platinized silicon substrates by Liquid Source Misted Chemical Deposition (LSMCD) process, and their microstructure, feroelectric and leakage current characteristics were investigated. By annealing at $800^{\circ}C$ for 1 hour in oxygen ambient, SBT films were fully crystallized to the Bi layered perovskite structure without preferred orientation. The grain size of the LSMCD- derived SBT films was about 100nm, and was not varied with the film thickness. $2P_r$ and $E_c$ of the SBT films increased with decreasing the film thickness, and the 70nm-thick SBT film exhibited $2P_r$ of 17.8 $\mu$C/$\textrm{cm}^2$ and $E_c$ of 74kV/cm at applied voltage of 5V. Within the film thickness range of 70~150nm, the relative dielectric permittivity of the LSMCD-derived SBT film decreased with decreasing the film thickness. Leakage current densities lower than $10^{-7}\textrm{A/cm}^2$ at 5V were observed in the SBT films thicker than 125nm.

  • PDF

Ferroelectric Properties of SBT Capacitor with Annealing Times

  • Cho, Choon-Nam;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.66-70
    • /
    • 2004
  • The Sr$\_$0.7/Bi$\_$2.3/Ta$_2$O$\_$9/(SBT)thin films are deposited on Pt-coated electrode (Pt/TiO$_2$/SiO$_2$/Si) using a RE magnetron sputtering method. The ferroelectric properties of SBT capacitors with annealing times were studied. As a result of conducting the X-ray diffraction analysis and the electron microscopy analysis, the perovskite phase began to grow from 10 minutes after annealing the specimen, and excellent crystallization was accomplished at 60 minutes after annealing the specimen. The remanet polarization (2P$\_$r/) value and the coercive electric field (E$\_$c/) of the SBT thin film specimen showed the most excellent characteristics at 60 minutes after annealing the specimen, which were approximately 12.40 C/$\textrm{cm}^2$ and 30 kV/cm, respectively. The leakage current density of the SBT thin film specimen as annealed for 60 minutes was approximately 2.81${\times}$10$\^$-9/A/$\textrm{cm}^2$.

Properties of $Sr_{0.8}Bi_{2.3}{(Ta_{1-x}Nb_{x})}_{2}O_{9+{\alpha}}$ Thin Films

  • Park, Sang-Jun;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.22-25
    • /
    • 2000
  • Polycrystalline SBTN layered ferroelectric thin film with various Nb mole ratios were prepared by sol-gel method Pt/ $SiO_2$/Si (100) substrates. The films were annealed at different temperature and characterized in terms of phase and microstructure. The films were crystallized with a high (105) diffraction intensity and had rodike structure, SBTN films fired at 800$^{circ}C$ revealed standard hysteresis loops with no fatigue for up to 10$^{10}$ cycles. At an applied voltage of 5V the dielectric constant($varepsilon$) , dissipation factor (tan $delta$), remanent polarization(ZPr) and coercive field(Ec) of typical S $r_{0.8}$B $i_{2.3}$(T $a_{1-x}$ N $b_{x}$) $O_{9+}$$alpha$/ thin film(x=0.1) prepared on Pt/ $SiO_2$/Si (100) were about 277.7, 0.042, 3.74$mu$C/$textrm{cm}^2$, and 24.8kv/cm respectively.ly.y. respectively.ly.y.y..

  • PDF

The study on the thickness change of tantalum oxide as voltage drop in electrolyte

  • Hur, Chang-Wu;Lee, Kyu-Chung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.453-456
    • /
    • 2010
  • Tantalum oxide ($Ta_2O_5$) films are of considerable interest for a range of application, including optical waveguide devices, high temperature resistors, and oxygen sensors. In this paper, we establish an anode oxidation process of tantalum thin film. The voltage drop in the electrolyte is affected not in voltage change but in current change. If the voltage drop in the electrolyte is same with cathode oxidation voltage, the current changes logarithmically in proportion to the voltage drop in interface of tantalum oxide and electrolyte. As a result of the measurement on the electrical property of tantalum oxide thin film, when the thickness of the insulator film is $1500{\AA}$, the breakdown voltage is 350volts and dielectric constant is 29.

Characteristics of the Crystal Structure and Electrical Properties of Metal/Ferroelectric/Insulator/Semiconductor (Metal/Ferroelectric/Insulator/Semiconductor 구조의 결정 구조 및 전기적 특성에 관한 연구)

  • 신동석;최훈상;최인훈;이호녕;김용태
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.195-200
    • /
    • 1998
  • We have investigated the crystal structure and electrical properties of Pt/SBT/$CeO_2$/Si(MFIS) and Pt/SBT/Si(MFS) structures for the gate oxide of ferroelectric memory. XRD spectra and SEM showed that the SBT film of SBT/$CeO_2$/Si structure had larger grain than that of SBT/Si structure. Furthermore HRTEM showed that SBT/$CeO_2$/Si had 5 nm thick $SiO_2$layer and very smooth interface but SBT/Si had 6nm thick $SiO_2$layer and 7nm thick amorphous intermediate interface. Therefore, $CeO_2$film between SBT film and Si substrate is confirmed as a good candidate for a diffusion barrier. The remanent polarization decreased and coercive voltage increased in Pt/SBT/$CeO_2/Pt/SiO_2$/Si structure. This effect may increase memory window of MFIS structure directly related to the coercive voltage. From the capacitance-voltage characteristics, the memory of Pt/SBT(140 nm)/$CeO_2$(25 nm)/Si structure were in the range of 1~2 V at the applied voltage of 4~6 V. The memory window increased with the thickness of SBT film. These results may be due to voltage applied at SBT films. The leakage currents of Pt/SBT/$CeO_2$/Si and Pt/SBT/Si were $ 10^8A/\textrm{cm}^2$ and $ 10^6 A/\textrm{cm}^2$, respectively.

  • PDF