• 제목/요약/키워드: TWIST1

검색결과 295건 처리시간 0.018초

소재 및 봉제 방법이 의료용 압박복 소재의 역학적 특성에 미치는 영향 (The Effects of Fabric and Sewing Methods on Mechanical Properties of Medical Compression Garments)

  • 석혜정;조신현
    • 한국의류학회지
    • /
    • 제41권1호
    • /
    • pp.60-70
    • /
    • 2017
  • This study selects representative materials and sewing methods used to: produce medical compression clothing in domestic garment, understand physical properties according to sewing conditions before and after knitting, and propose a sewing method that can improve the functional properties of the medical pressure clothing for burn patients. This experiment used samples from two knitted fabrics of high-frequency, produced and sold among fabrics used to produce medical compression clothing in Korea. Sewing methods were N321, N502 and N601, most commonly used in the press clothing industry. Fabric A is most often reduced in EMT values when sewing N502. However, N321 and N502 are suitable sewing methods for the reliable to twist at the larger torsional shear and the larger 2HG, 2HG5 value. Fabric B is sewn with N601, the EMT value is the most elevated, LT value is also low and extensibility improves after sewing. N601 is shown as an appropriate sewing method for warp knitting. When sewing with N321, the torsional is stable but elongation is lacking. N502 is not good for torsional stability.

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

경년열화가 증용량 저이도 송전선의 기계적특성에 미치는 영향 (II) (Effect of Mechanical Properties by a Long Term Operation in High Capacity and Low Sag Conductor ( II ))

  • 김상수;김병걸;신구용;이동일;민병욱
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.100-106
    • /
    • 2006
  • Today, restricted energy sources, environmental considerations and the high cost of transporting fuel have limited the number and location of available power plant sites. The pressures resulting from these conditions have tended to require the construction of long, high-capacity, high-voltage power lines. it's used to adapt to STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced) conductor for coping with these situations. STACIR/AW conductor was formed by the combination of INVAR/AW as the core for low sag and super thermal-resistant aluminum alloy conductor for current capacity increase. increase of temperature by current capacity and long span lines make the susceptible to the deterioration of thermo-mechanical properties(conductivity, tensile strength, E-modulus and twist property et al). In the present work, changes of thermo-mechanical properties with aging have been studied in STACIR/AW $410 mm^2$ conductor with forms of single wire and strand wire.

Approximated Generalized Torques by the Hydrodynamic Forces Acting on Legs of an Underwater Walking Robot

  • Jun, Bong-Huan;Shim, Hyung-Won;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.222-229
    • /
    • 2011
  • In this paper, we present the concept and main mission of the Crabster, an underwater walking robot. The main focus is on the modeling of drag and lift forces on the legs of the robot, which comprise the main difference in dynamic characteristics between on-land and underwater robots. Drag and lift forces acting on the underwater link are described as a function of the relative velocity of the link with respect to the fluid using the strip theory. Using the translational velocity of the link as the rotational velocity of the joint, we describe the drag force as a function of joint variables. Generalized drag torque is successfully derived from the drag force as a function of generalized variables and its first derivative, even though the arm has a roll joint and twist angles between the joints. To verify the proposed model, we conducted drag torque simulations using a simple Selective Compliant Articulated Robot Arm.

회전하는 얇은 링의 고유진동 해석을 위한 모델링 (Modeling for the Natural Vibration Analysis of a Rotating Thin Ring)

  • 김창부;김세희
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.57-65
    • /
    • 2006
  • In this paper, we present the principle of virtual work, from which the exact non-linear equations of motion of a rotating ring can be derived, by using the theory of finite deformation. For a thin ring of which the effect of variation in curvature across the cross-section is neglected, the radial displacement and the extensional stress are determined from the principle of virtual work at the steady state where the ring is rotating with a constant angular velocity. And also we formulate systematically the governing equations concerned to the in-plane vibrations and the out-of-plane vibrations at the disturbed state by using the principle of virtual work which is expressed with the disturbed displacements about the steady state. The formulated governing equations are classified by four models along the cases of considering or neglecting all or partly the secondary effects of flexural shear, rotary inertia, circumferential extension, and twist inertia. The natural vibrations of thin rings are analyzed, and its results are compared and discussed.

스트레치소재(素材) 의류제품(衣類製品)의 생산실태(生産實態) 硏究(I) (A Study on the Conditions of Apparel Products of Stretch Material(I))

  • 박진영;손희순
    • 패션비즈니스
    • /
    • 제1권3호
    • /
    • pp.35-44
    • /
    • 1997
  • The purpose of this study is to the processes and quality of local women's apparel production using the stretch fabric and to address the problems related to production in order to provide useful data for producing competitive apparels. The result of the survey can be summarized as follows; 1. Results of surveying the process for raw materials and notions indicated that most of the workers were ignorant of the properties of stretch fabrics. And most factories were stacking the stretch fabrics across improperly, while being aware of the properties of the fabrics through their experiences or in-company test. 2. The major problem involving spreading fabrics was the uneven tension, followed by static electricity, overlap and warp twist. The problems involving the cutting work were melting of the fabric by cutter and difference of size between upper and lower parts. 3. Most of the businesses were not tempering the fabric before and after its linking works due to lack of working space, short delivery time, ignorance and etc. The majority of the sample businesses were operating their cutters at the speed of 3,000 rpm or higher, which suggests a poor technological guidance.

  • PDF

고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석 (Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion)

  • 한삼희;김종길;박창규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권6호
    • /
    • pp.31-39
    • /
    • 2013
  • 고강도 콘크리트 보의 극한상태의 거동을 강도에 따라 연구하였다. 13개의 보를 해석하고 그 결과를 제시하였다. 변수는 콘크리트의 압축강도로 범위는 57~184 MPa이며, 횡방향 철근비로 범위는 0.35~1.49%이다. 실험에서 측정한 극한 비틀림 강도를 본 논문에서 제안한 값과 ACI 기준에 따른 값을 비교하였다. 그 결과 본 논문에서 제안한 이론에 의한 극한 비틀림 강도가 ACI 기준에 따른 값보다 더 좋은 결과를 보였다.

소형풍력발전기용 블레이드 공력설계 프로그램 개발 (Development of an aerodynamic design program for a small wind turbine blade)

  • 윤진용;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

상지 이용 유무와 훈련 기간이 무용 회전 동작의 기능에 미치는 영향 (The Effect of Upper Extremity Usage and Length of Training to the Function of Dance Turn)

  • 박양선;임영태
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.175-184
    • /
    • 2007
  • The first purpose of this study was to compare kinematic variables during spinning motion with or without upper extremity and identify the most effective spinning method. The second purpose of this study was to compare functional difference between novice and elite dancers with the term of training. Ten experienced female dancers and ten novices were recruited as subjects for this study. Elite group was asked to perform turn motion with three types of upper extremity. Novice group has taken training of spotting technique for five weeks. Four Falcon HiRES cameras were used to analyze kinematic variables including head angular velocity and CG displacement during spinning. These data were sampled before training, after 3-week, and 5-week of training. Eight different events in two consecutive turns were defined for statistical comparison. One-way ANOVA was performed to compare among the kinematics of turning motion with three types of upper extremity. Independent t-test also used to compare kinematics between elite and novice at three different length of training. As results, spinning with both arm increased angular velocity and stability compared to the turning motion with one arm or with arm strapped and found out that the turn with both arm was the most effective way of spin. Also, for novice dancers, three weeks of training were needed to complete spinning motion.