• Title/Summary/Keyword: TWC(Three-way Catalyst)

Search Result 9, Processing Time 0.02 seconds

The Structural Analysis of Three-Way Catalyst Substrate using Coupled Thermal-Fluid-Structural Analysis (열유동구조연성해석을 이용한 삼원촉매담체의 구조 해석)

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3035-3043
    • /
    • 2015
  • This study evaluates the thermal structural safety of the three-way catalyst(TWC) substrate for domestic passenger cars. Thermal-fluid boundary conditions on the TWC substrate were determined by D-optimal DOE. The thermal stresses on the TWC substrate were calculated by the temperature distribution obtained from the CFD results. The safety factors of the TWC substrate were determined by statistical strength and stress distributions and estimated to be 0.275. The thermal stresses for TWC substrate exceeded the strength of the material. Therefore, it is necessary to redesign the TWC substrate because it has much shorter service life than design life.

A Study on an Adaptive Three-Way Catalyst Model for the Monitoring Algorithm (정화 능력 진단 적용을 위한 학습을 통한 삼원촉매 모델의 구현에 관한 연구)

  • 최동범;김용민;박재홍;윤형진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.65-70
    • /
    • 2003
  • In this paper, an adapted TWC model and its application to the monitoring algorithm are proposed. As TWCs have the different characteristics, the model has to be corrected to diagnose more accurately. In the TWC model oxygen storage and release rate model are adapted to the installed TWC to whose characteristics related. The model learns from the downstream $O_2$ sensor output during the vehicle's operation. From the results, the model is adapted to the Installed TWC's characteristics. using this model, the monitoring algorithm can diagnose the no more accurately. Finally the algorithm is validated with simulations using the data logged from a retail car.

Comparison of NOx Reduction Characteristics of NOx Storage Catalyst and TWC for Lean-burn Natural Gas Vehicles (희박 천연가스 자동차용 NOx 흡장촉매와 TWC의 NOx 반응특성 비교)

  • 최병철;정우남;이춘희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.79-84
    • /
    • 2004
  • We evaluated the reduction performance of NOx storage catalyst and TWC for lean-burn natural gas engine by the model gas. The method of unsteady state reaction was used to compare with reduction performances of NOx storage catalyst and TWC. It was found that the effective parameter was rich spike duration, temperature of the model gas. In the presence of $CO_2$ and $H_2O$ in the reaction mixture was decreased the NOx reduction performance.

Feedback Control using Dual O2 Sensors for Improving the Conversion Efficiency of a Three-way Catalyst in a Heavy-duty CNG Engine (CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상)

  • Yoon, Sungjun;Lee, Junsun;Park, Hyunwook;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2019
  • In this study, feedback logic using dual O2 sensor values were developed to increase the purification capability of a three-way catalyst (TWC) in a compressed natural gas (CNG) engine. A heavy-duty inline 6-cylinder engine was used and the CNG was supplied to the engine through a mixer. This study consists of two main parts, namely, the proportional integral (PI) control with a front O2 sensor and the feedback control with dual O2 sensors. In the PI control experiment, effects of various parameters, such as P gain, I gain, and lean delay, on the TWC capability were identified. Based on the results of the PI control experiment, the feedback logic using dual O2 sensor values were developed. In both cases, the nitrogen oxides (NOX) emissions were nearly zero. However, the carbon monoxide (CO) emissions were reduced significant in the feedback logic with dual O2 sensors than in the PI control with the front O2 sensor.

Effect of Operating Condition Change on the Conversion Efficiency of TWC with HCNG Engine (운전조건 변화가 HCNG 엔진용 삼원촉매 전환효율에 미치는 영향)

  • Kim, Chang-Gi;Lee, Sung-Won;Yi, Ui-Hyung;Park, Cheol-Woong;Lee, Sun-Youp;Choi, Young;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.40-46
    • /
    • 2015
  • Stoichiometric combustion engine with Three-way catalyst had an advantage that can reduce the harmful emissions effectively. Fuel equivalence ratio controlled from engine is very important because Fuel equivalence ratio with high conversion efficiency was narrow. This study analyzed the conversion efficiency under whole range of operating area for to evaluate the performance of three-way catalyst. In order to identify the Optimum conversion efficiency, the conversion efficiency due to change the control value of fuel equivalence ratio was investigated. The result show that conversion efficiency of emissions(more than 95%) has discovered by means of fuel equivalence ratio control at each test condition. As engine power increases, optimal fuel equivalence ratio tended to increase linearly under operating conditions of similar exhaust gas temperature.

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

The Misfire Detection and Intensity Interpretation using Breakdown Voltage Characteristics (브레이크다운전압 특성을 이용한 엔진실화의 검출 및 강도해석)

  • 고용수;박재근;조민석;황재원;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.42-48
    • /
    • 1999
  • Engine misfire causes of the negative effect on exhaust emission such as HC, CO, and NOX . Moreover, it causes damage to the three-way-catalyst(TWC) system permanently. The crankshaft velocity fluctuation(CVF) method has been applied for the real cars as misfire detection system usually, which utilizes the crank angle sensor input to calculate the variation of the crankshaft rotational speed. But this approach has the limit due to the fact that three could be problem under certain engine condition like as deceleration or high speed condition . Therefore the development of new methods are requested today. This study introduced the new method of misfire detection using breakdown voltage(BDV) characteristics between spark plug electrouds.

  • PDF

Utilization of Spent Catalysts for the Removal of VOCs (휘발성 유기화합물 제거를 위한 폐 촉매의 이용)

  • Kim, Sang Chai;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2007
  • Various commercial catalysts used in chemical related applications have been disposed as an industrial waste when the catalytic activity of catalysts is not good enough to achieve an optimum yield. In addition, the amount of disposed three way catalysts (TWC) has been continuously increased. Considering the physicochemical, environmental, and economical characteristics, the deactivated spent catalysts can be treated in several alternative ways such as regeneration, recycling, and disposal. In view of the environmental and economical matters, the spent catalyst should be regenerated and used for the various purposes, although its activity is not as good as a fresh catalyst. On the other hand, spent catalysts containing noble and metal oxides can be applicable for the catalytic oxidation of volatile organic compounds (VOCs) by applying the proper treatment method. Therefore in this review the quantity of the spent catalysts and the available regeneration methods for the spent catalysts are briefly summarized and especially the proper regeneration method for applying the catalytic oxidation of VOCs and its results are introduced.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.