• Title/Summary/Keyword: TVBDs

Search Result 4, Processing Time 0.017 seconds

Protection of Incumbent Services and Its Impact on Coverage of TV Band Device Networks in TV White Space

  • Kang, Kyu-Min;Park, Jae Cheol;Cho, Sang-In;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.112-122
    • /
    • 2016
  • This paper presents a set of candidate regulatory requirements for TV band devices (TVBDs) in the Rep. of Korea. To guarantee the protection of incumbent services, especially digital TV (DTV) and wireless microphones, in TV frequency bands, we suggest minimum separation distances of TVBDs from the noise-limited contour according to incumbent users and TVBD types. This paper also deals with multiple sets of separation distances of a co-channel TVBD network from a DTV protected contour on the basis of the radio propagation characteristics of different geographic areas to make good use of TV white space (TVWS) and safely protect the DTV service. We present a low-power transmission mode of TVBDs and the relevant separation distances for small-cell deployment. The service coverage reduction ratio of a TVBD network is investigated in the presence of DTV interference in four geographic areas. The TVWS field verification results, conducted on the island of Jeju (Rep. of Korea), show that incumbent services operate well without harmful interference from neighboring TVBDs with the proposed separation distances.

Analysis and Technical Consideration for the Rules on Television White Space (TVWS 대역 규정에 관한 분석 및 기술적 고려)

  • Kim, Young-Soo;Cho, Sang-In;Jeong, Byung-Jang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.923-933
    • /
    • 2012
  • In this paper, we propose the technical considerations for the rules on television white space(TVWS), that becomes a center of public notice, in terms of incumbent services protection, technical requirements of television band devices (TVBDs) and administration of TV band databases. The basic idea behind the proposed method is based on the perfect protection of incumbent services such as digital television and wireless microphone. It has been found that FCC's approach has the advantage that a list of available channels and transmission power are provided for TVBDs faster than Ofcom's approach that requires DB to perform the algorithm for determining frequencies and transmission power for TVBDs everytime DB is asked from TVBDs.

A Study on Hidden Node Margin to Protect DTV Service in Korea (국내 DTV 서비스 보호를 위한 은닉 노드 마진 연구)

  • Kang, Kyu-Min;Cho, Sang-In;Jeong, Byung-Jang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1165-1171
    • /
    • 2011
  • In this paper, we investigate hidden node problem to effectively utilize TV band devices(TVBDs) in the TV white space(TVWS), and also to protect digital television(DTV) service in Korea. Firstly, we classify the radio propagation environment into an urban area, a basin area, and a coastal area based on geographical characteristics. Thereafter, we measure and analyze local shape based hidden node attenuation at eight segmented positions in each geographic area. Because commercial buildings as well as residential and commercial buildings in Korea are located in closer proximity to each other than in other countries, hidden node margin should be more than 38 dB in order to safely protect DTV service in Korea.

CR Technology and Activation Plan for White Space Utilization (화이트 스페이스 활용을 위한 무선환경 인지 기술 및 활성화 방안)

  • Yoo, Sung-Jin;Kang, Kyu-Min;Jung, Hoiyoon;Park, SeungKeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.779-789
    • /
    • 2014
  • Cognitive radio (CR) technology based on geo-location database access approach and/or wideband spectrum sensing approach is absolutely vital in order to recognize available frequency bands in white spaces (WSs), and efficiently utilize shared spectrums. This paper presents a new structure for the TVWS database access protocol implementation based on Internet Engineering Task Force (IETF) Protocol to Access WS database (PAWS). A wideband compressive spectrum sensing (WCSS) scheme using a modulated wideband converter is also proposed for the TVWS utilization. The developed database access protocol technology which is adopted in both the TV band device (TVBD) and the TVWS database operates well in the TV frequency bands. The proposed WCSS shows a stable performance in false alarm probability irrespective of noise variance estimation error as well as provides signal detection probabilities greater than 95%. This paper also investigates Federal Communications Commision (FCC) regulatory requirements of TVWS database as well as European Telecommunications Standards Institute (ETSI) policy related to TVWS database. A standardized protocol to achieve interoperability among multiple TVBDs and TVWS databases, which is currently prepared in the IETF, is discussed.