Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.117-120
/
2012
본 논문에서는 토픽 모델링 기반 TV 프로그램 유사 시청 사용자 그룹핑 및 이를 이용한 TV 프로그램 콘텐츠 추천 알고리듬을 제안하였다. 제안 기술은 토픽 모델링 기법 중 Latent Dirichlet Allocation(LDA) 방법을 이용하여 TV프로그램 시청 기록 내에서 은닉된 유사 사용자들을 그룹핑하고 이러한 유사 시청 사용자 그룹 정보를 이용하여 사용자에게 선호 TV 프로그램 콘텐츠를 자동으로 추천하는 알고리듬이다. 제안된 자동 추천 알고리듬의 성능평가를 위해 실제 TV 시청기록 데이터를 이용하여 훈련 기간과 검증 기간을 나누어 훈련 기간 동안 제안한 알고리듬을 이용하여 사용자 개인에 대한 추천 TV 프로그램 콘텐츠 목록을 생성하여 검증 기간 동안에 실제 추천된 TV프로그램을 얼마나 시청했는지를 측정하여 추천 정확도를 검증하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.47-50
/
2015
TV는 타 도메인과 달리, 사전에 정해진 시간에 콘텐츠가 방영된다. 그러므로 TV 프로그램 추천 시스템은 시청자의 현재 시각(time-context)을 고려해야 한다. 시간 기반의 TV 프로그램 추천 방법이 다수 연구되었지만, 대부분의 기존 연구는 특정 시간대(timeslot)에서의 시청자의 선호도를 계산하는 데에만 집중되어 있고, 시청 내역 전체기간에서의 선호도를 고려하지 않은 문제점이 있다. 이러한 문제를 해결하기 위해, 시청자의 지역 선호도와 전역 선호도를 모두 고려한 시간 기반의 TV 프로그램 추천기법을 제안한다. 이를 위해 제안 방법에서는 시간대의 길이에 따라 여러 가지 선호도 모델을 사용한다. 여러 개의 선호도 모델로부터 산출된 선호도를 병합하여 가장 선호도가 높은 TV 프로그램을 추천한다. 실 데이터를 이용한 실험을 통해 기준방식과 비교함으로써, 제안 방법의 효용성을 검증하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.5
/
pp.431-436
/
2015
As a number of TV programs broadcast today, researches about TV program recommender system have been studied and many researchers have been studying recommender system to produce recommendation with high accuracy. Recommender system recommends TV program to user by using metadata like genre, plot or calculating users' preferences about TV programs. In this paper, we propose a new TV program Collaborative Filtering Recommender System that exploits viewing time pattern like viewing ratio, relation with finish time and recently viewing history to calculate preference for high-quality of recommendation. To verify usefulness of our research, we also compare our method which utilizes viewing time patterns and baseline which simply recommends TV program of user's most frequently watched channel. Through this experiments, we show that our method very effectively works and recommendation performance increases.
Park, Chang-yong;Chung, Yeounoh;Kim, Noo-ri;Lee, Jee-hyoung
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.272-274
/
2013
최근 TV 시청자들의 콘텐츠 소비량이 증가함에 따라 방송사에서 제공하는 TV 프로그램들의 수량이 방대해지고 장르 또한 다양해지고 있기 때문에 시청자가 TV 프로그램을 선택하는 것이 점점 더 어려워지고 있다. 이러한 문제를 해결하기 위해 TV 프로그램 추천이라는 연구가 활발하게 이루어지고 있다. 기존의 연구에서는 시청자를 기반으로 하는 협업 필터링 추천 방법과 아이템을 기반으로 하는 협업 필터링 추천 방법이 제안되었지만 시청자의 시청 의도를 고려하는 연구는 사례는 적다. 이에 본 논문에서는 LDA 모델링을 이용하여 사용자의 시청 의도를 고려한 TV 프로그램 추천 기법을 제안한다. 실험을 통해 시청자의 시청 의도가 반영된 TV 프로그램 추천이 가능하다는 것을 검증했다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.51-54
/
2015
추천 시스템의 대표적인 연구 중 하나인 콘텐츠 기반 추천 시스템 연구는 TV 프로그램이나 영화의 줄거리, 장르, 리뷰 등의 콘텐츠의 메타데이터를 이용한다. 그러나 이러한 연구들은 콘텐츠 관련 정보에만 의존할 뿐, 시청자의 프로파일과 콘텐츠의 정보를 함께 고려하지 않는다. 본 논문에서는 시청자의 프로파일 중 연령과 콘텐츠의 정보인 프로그램의 줄거리를 활용한 TV 프로그램 추천 시스템을 제안한다. 본 추천 시스템은 시청자를 연령에 따라 분류한 후, LDA 알고리즘을 이용하여 시청자의 시청 TV 프로그램의 줄거리를 분류된 나이에 따라 각각의 줄거리 토픽 모델로 생성한다. 이를 기준으로 시청자가 원하는 시간대에 방송되는 프로그램들의 줄거리 토픽벡터와 시청자의 선호도 토픽벡터의 유사도를 비교해 가장 유사도가 높은 TV 프로그램을 시청자에게 추천하는 방식이다. 본 논문에서는 연구의 효용성을 검증하기 위해 줄거리만을 사용한 경우와 줄거리와 연령을 동시에 활용한 경우를 비교 실험하였다. 실험을 통해 프로그램의 줄거리만을 사용한 경우보다 연령을 동시에 활용한 경우의 추천 시스템 성능이 개선된 것을 확인할 수 있었다.
Collaborative filtering(CF) for the personalized recommendation is a successful and popular method in recommender systems. But the mainly researched and implemented cases focus on dealing with independent items with explicit feedback by users. For the domain of TV program recommendation in VOD service platform, we need to consider the unique characteristic and constraints of the domain. In this paper, we studied on the way to convert the viewing history of each TV program episodes to the TV program preference by considering the series structure of TV program. The former is implicit for personalized preference, but the latter tells quite explicitly about the persistent preference. Collaborative filtering is done by the unit of series while data gathering and final recommendation is done by the unit of episodes. As a result, we modified CF to make it more suitable for the domain of TV program VOD recommendation. Our experimental study shows that it is more precise in performance, yet more compact in calculation compared to the plain CF approaches. It can be combined with other existing CF techniques as an algorithm module.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.797-799
/
2003
다양한 분야를 대상으로 추천기법에 관한 연구 및 적용이 이루어지고 있다. 전자 상거래 분야에서 소비자가 선호할만한 상품을 추천하거나 영화 관련 사이트에서 볼만한 영화를 추천해주는 것들이 대표적인 예이다. TV 프로그램 또한 채널의 수가 수 백개 이상으로 늘어남에 따라 추천의 필요성이 제기되고 있다. 본 연구에서는 TV 프로그램들을 대상으로 하는 추천 시스템을 구현하였다. 추천 기법은 내용 기반 방식으로 이루어져 있으며 실험을 통해 내용기반 방식이 TV환경에서 가지는 효용성을 알아보고 적용 가능성을 타진해 보았다.
With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.
Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.
With advent of TV environment and increasing of variety of program contents, users are able to experience more various and complex environment for watching TV contents. According to the change of content watching environment, users have to make more efforts to choose his/her interested TV program contents or TV channels than before. Also, the users usually watch the TV program contents with their own regular way. So, in this paper, we suggests personalized TV program schedule recommendation system based on the analyzing users' TV watching history data. And we extract the users' watched program patterns using the sequential pattern mining method. Also, we proposed a new sequential pattern mining which is suitable for TV watching environment and verify our proposed method have better performance than existing sequential pattern mining method in our application area. In the future, we will consider a VoD characteristic for extending to IPTV program schedule recommendation system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.