• 제목/요약/키워드: TURNING PHASE

검색결과 96건 처리시간 0.026초

휠체어 새천년 건강체조의 팔꿈치 운동속도에 따른 상지협응과 근활성도 변화 (Wheelchair-based New Millennium Health Gymnastics: Muscle Activity and Upper Limbs Coordination by Elbow Exercise Velocity)

  • 이강진;김택훈
    • 대한물리의학회지
    • /
    • 제9권2호
    • /
    • pp.161-170
    • /
    • 2014
  • PURPOSE: This study concerns the wheelchair-based rehabilitation of elderly people, investigating muscle activity and coordination of upper limbs during wheelchair-based new millennium health gymnastics with varying elbow exercise velocity. METHODS: Twelve elderly people participated in new millennium gymnastics twice per week during 12-weeks. The group was separated into 0.4, 1.0, and 1.6 Hz groups (controlled by the metronome speed). Range of motion was measured by electrogoniometer, electromyography signals used root mean square values. The data application was normalized using reference voluntary contraction (%RVC). Upper limb (wrist and elbow joint) data gathered while standing up after the "falling on hips" was investigated in terms of coordination of angle-angle plots. One-way ANOVA, paired t-test and Scheffe's post hoc comparisons, were used for statistical analyses. RESULTS: There were results taken before and after the experiments. The results demonstrated a significant improvement in the triceps brachii and flexor carpi radialis of the 0.4 Hz group (p<.05). There was significant difference in the triceps brachi of the 1 Hz group. No significant differences were found in all muscles of the 1.6 Hz group. Muscle co-activation indexes of the 0.4 Hz group were larger than the others. The 0.4 Hz graph was turning point synchronized clockwise. The 1 Hz graph was out of phase with the negative slope. The 1.6 Hz graph was turning point synchronized counterclockwise, and uncontrolled factor phase was offset on angle-angle plots. CONCLUSION: It is found that improvement of muscle activity and upper limbs coordination of elderly people using wheelchair-based new millennium gymnastics is optimal with elbow exercise velocity with a frequency of 0.4 Hz.

질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성 (CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame)

  • 이호현;오창보;황철홍
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

다이아몬드 터닝 가공에서의 비철금속에 대한 미세절삭력 특성 연구 (A Study on Cutting Force Characteristics of Non-ferrous steel in Diamond Turning Process)

  • 정상화;김상석;차경래;김현욱;나윤철;홍권희;김건희;김효식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.38-42
    • /
    • 2001
  • A complete quantitative understanding of DT has been difficult because the process represents such a broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. There are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

다이아몬드 터닝 가공공정에서의 미세절삭력 특성 연구 (A Study on Cutting Force Characteristics in Diamond Turning Process)

  • 정상화;김상석;차경래;김건희;김근홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.957-960
    • /
    • 1997
  • A complete quantitative understanding of DT has been difficult because the process represents such s broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. Here are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis

  • Jeon, Myungjun;Yoon, Hyeon Kyu;Hwang, Junho;Cho, Hyeon Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.508-519
    • /
    • 2018
  • In order to design the hull form of an underwater vehicle in the conceptual design phase, the dynamic characteristics depending on the hull form parameters should be identified. Course-keeping stability, turning ability, yaw-checking ability, and mission competence are set to be the indices of the dynamic characteristics, and the geometric parameters for the bare hull and rudder are set to be the hull form design parameters. The total sensitivity of the dynamic characteristics with respect to the hull form parameters is calculated by the chain rule of the partial sensitivity of the dynamic characteristics with respect to the hydrodynamic coefficients, and the partial sensitivity of the hydrodynamic coefficients with respect to the hull form parameters. Based on the sensitivity analysis, important hull form parameters are selected, and those optimal values to satisfy the required intercept time of mission competence of a specific underwater vehicle and turning rate are estimated.

액체질소 분사 안정화를 통한 극저온가공 품질 향상 (Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure)

  • 강명구;민병권;김태곤;이석우
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

In-Process Evaluation of Surface Characteristics in Machining

  • Jang, Dong-Young;Hsiao, Alex
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.99-107
    • /
    • 1995
  • This paper reported research results to develop an algorithm of on-lin evaluation of surface profiles and roughness generated by turning. The developed module consisted of computer simulation of surface profiles using mechanism of cutting mark formation and cutting vibrations, and online measurement of cutting vibrations. The relative cutting vibrations between tool and worpkiece were measured through an inductance pickup at the rate of one sample per rotation of the workpiece. The sampling process was monitored using an encoder to avoid conceling out the phase lag between waves. The digital cutting signals from the Analog-to-Digital converter were transferred to the simulation module of surface profile where the surface profiles were generated. The developed algorithm or surface generation in a hard turning was analyzed through computer simulations to consider the stochastic and dynamic nature of cutting process. Cutting tests were performed using AISI 304 Stainless Steel and carbide inserts in practical range of cutting conditions. Experimental results showed good correlation between the surface profiles and roughness obtained using the developed algorithm and the surface texture measured using a surface profilemeter. The research provided the feasibility to monitor surface characteristics during tribelogical tests considering wear effect on surface texture in machining.

Forecasting Exchange Rates using Support Vector Machine Regression

  • Chen, Shi-Yi;Jeong, Ki-Ho
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.155-163
    • /
    • 2005
  • This paper applies Support Vector Regression (SVR) to estimate and forecast nonlinear autoregressive integrated (ARI) model of the daily exchange rates of four currencies (Swiss Francs, Indian Rupees, South Korean Won and Philippines Pesos) against U.S. dollar. The forecasting abilities of SVR are compared with linear ARI model which is estimated by OLS. Sensitivity of SVR results are also examined to kernel type and other free parameters. Empirical findings are in favor of SVR. SVR method forecasts exchange rate level better than linear ARI model and also has superior ability in forecasting the exchange rates direction in short test phase but has similar performance with OLS when forecasting the turning points in long test phase.

  • PDF

UAV Formation Wight Control Law Utilizing Energy Maneuverability

  • Choi, Jong-Ug;Kim, You-Dan;Moon, Gwan-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.31-41
    • /
    • 2008
  • This paper deals with the energy saving problem of the follower aircraft in the loose leader-follower formation geometry in which the lateral separation between formation members is more than a wingspan of the leader aircraft. This formation geometry offers no drag benefit, but has a strategic advantage. In the case of loose formation flight, the follower aircraft usually consumes more energy than the leader aircraft because the follower aircraft should use more thrust to maintain given formation geometry, especially during the turning phase from the outside of the leader"s flight path or join-up phase. A formation control scheme based on the energy maneuverability is proposed in this paper. To design the proposed control law, the velocity command is designed using feedback linearization for the horizontal formation geometry and then coverts it to the altitude command using the energy equation. Numerical simulation is performed to verify the effectiveness of the proposed controller.

모듈형 동시냉난방 열펌프의 장배관/고낙차에 따른 액선 과냉도 변화에 대한 연구 (Study on longitudinal variation of subcooling with high elevated liquid line in a modular heat pump system)

  • 신광호;김민성;백영진;나호상;박성룡
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1255-1260
    • /
    • 2008
  • This study is simulation of high elevated liquid line of a modular heat pump system to observe longitudinal subcooling variation. In a high elevated tube, subcooled refrigerant(R410A) through a condenser changes its states by heat transfer with surrounding air and by pressure drop from elevation. In this study, the liquid line was simulated through correlations of heat transfer and pressure drop for the variation from single-phase into two-phase flow. Pressure drop, heat transfer rate and vapor quality were calculated as key parameters. Two-phase turning heights and variations of the key parameters were confirmed from the simulation. As a result, high elevation of liquid line has great influence on upward flow, which requires additional equipment to compensate the variation.

  • PDF