• Title/Summary/Keyword: TURBID STREAM

Search Result 28, Processing Time 0.023 seconds

Ecological Effects of Kumgang fat minnow(Rhynchocypris kumgangensis) on Turbid Water (탁수에 의한 금강모치(Kumgang fat minnow; Rhynchocypris kumgangensis) 개체군의 생태적 영향)

  • Lee, Jae-Yong;Choi, Jae-Seok;Kim, Jai-Ku;Jang, Young-Su;Lee, Kwang-Yeol;Kim, Bom-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.184-191
    • /
    • 2008
  • To investigate the effect of turbid water on fish population, the length-weight relationship and its condition factor were applied to Kumgang fat minnow Rhynchocypris kumgangensis collected in turbid (the Daegi and the Jaun streams) and non-turbid stream (the Bongsan and the Gyebang streams) for a year from 2004 to 2005. The mean length of minnow between turbid water and non-turbid water streams was not significantly different. In the South River system, the regression coefficients (b) based on length-weight relationship were 3.21 in the non-turbid Bongsan stream and 3.07 in the turbid Daegi stream, respectively. On contrary, the regression slope in the turbid stream was a little higher than that of the non-turbid stream located in the Bukhan River system. The values were 3.20 in the Gyebang-stream and 3.23 in the Jaun stream, respectively. Our result suggested that chronic turbid water effect on the level of fish population has a little or no effect.

Effects of Turbid Water on Fish Community: Case Studies of the Daegi Stream and the Bong-san Stream (탁수가 어류군집에 미치는 영향: 대기천 및 봉산천의 사례연구)

  • Kim, Jai-Ku;Choi, Jae-Seok;Jang, Young-Su;Lee, Kwang-Yeol;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.459-467
    • /
    • 2007
  • The effects of turbid water on fish community was investigated in a clear reference stream (the Bongsan Steam) and a turbid stream (the Daegi Stream) located in the upstream region of the South Han River, Korea. The stress index (SI) of suspended solids (SS) were calculated during a rain event concentration by the equation SI=LN (SS${\times}$duration). EMC of SS was $1{\sim}13$ mg $L^{-1}$ in the clear stream with a mean SI of 5.2, while SS was $97{\sim}1,150$ mg $L^{-1}$ in the turbid stream with a mean SI of 10.3. Even though the number of species was not much different, the dominant species of the two steams were distinctly different. The reference stream was dominated by upstream species such as Rhynchocypris kumgangensis, Brachymystax lenok tsinlingensis, and Cottus poecilopus which are typical upstream community. Whereas the turbid streams was dominated by Rhynchocypris kumgangensis, Zacco koreanus, and Orthrias nudus which are representatives of middle reache community. Fish density was four times higher in the clear steam than the turbid stream. In the similarity analysis of fish communities the community of the turbid stream showed large dissimilarity with other communities in other streams of similar size. In conclusion, although turbidity might be at the sublethal concentration, fish communities are under stress in some turbid streams of Korea that is strong enough to induce community change. It can be an example of a chronic ecological toxicity of turbidity at the community level.

Effects of Turbid Water on Fish Ecology in Streams and Dam Reservoirs

  • Seo, Jin-Won;Lee, Jong-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.431-440
    • /
    • 2008
  • Turbid water or suspended sediment is associated with negative effects on aquatic organisms; fish, aquatic invertebrate, and periphyton. Effects of turbid water on fish differ depending on their developmental stage and a level of turbidity. Low turbid water may cause feeding and predation rates, reaction distance, and avoidance in fish, and it could make fish to die under high turbidity and long period. Therefore, it is very important to find out how turbid water or suspended sediment can affect fish in domestic watersheds. The objectives of this study were 1) to introduce international case studies and their standards to deal with suspended sediment, 2) to determine acute toxicity in 4 major freshwater fishes, and 3) to determine in relation to adverse effect of macroinvertebrates and fish. Impacts of turbid water on fish can be categorized into direct and indirect effects, and some factors such as duration and frequency of exposure, toxicity, temperature, life stage of fish, size of particle, time of occurrence, availability of and access to refugia, etc, play important role to decide magnitude of effect. A review of turbidity standard in USA, Canada, and Europe indicated that each standard varied with natural condition, and Alaska allowed liberal increase of turbidity over natural conditions in streams. Even though acute toxicity with four different species did not show any fatal effect, it should be considered to conduct a chronic test (long-term) for more detailed assessment. Compared to the control, dominance index of macroinvertebrates was greater in the turbid site, whereas biotic index, species diversity index, species richness index, and ecological score were smaller in the turbid site. According to histopathological analysis with gills of macroinvertebrate and fishes, morphological and physiological modification of gills due to suspended sediments can cause disturbance of respiration, excretion and secretion. In conclusion, in order to maintain good and healthy aquatic ecosystem, it is the best to minimize or prevent impact by occurrence of turbid water in stream and reservoir. We must make every effort to maintain and manage healthy aquatic ecosystem with additional investigation using various assessment tools and periodic biomonitoring of fish.

Short-term Effects of Turbid Water and Flow Rate on the Benthic Diatom Community in an Artificial Channel (단기간 탁수와 유속 변동이 부착돌말류 성장에 미치는 영향)

  • Kim, Baik-Ho;Park, Hye-Jin;Min, Han-Na;Kong, Dong-Su;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.855-861
    • /
    • 2011
  • Short-term effects of current velocity and turbid water on the benthic diatom community and water quality were examined in artificial channel ($20{\times}200{\times}10cm$) with two different experiments. The first and second experiments were consisted of different current velocities such as 1 L/min., and 1, 3, and 6 L/min., respectively. The concentration of turbid water is prepared with loess and fixed at 10 and 20 times of the turbidity of control inflow (10 NTU, LTW), respectively. At experiment 1 (EXP-1), introduction of turbid water increased dissolved oxygen, electric conductivity, pH and turbidity, but there were no differences between low- (100 NTU, MTW) and high-turbid water (200 NTU, HTW). However, experiment 2 (EXP-2) did not change any environmental parameters except dissolved total and inorganic nitrogen like EXP-1. MTW in EXP-1 strongly stimulated the growth of benthic diatom, while both MTW (150 NTU) and HTW (300 NTU) in EXP-2 did not increase or decrease the diatom abundance. Over the study, the dominant species was four, Aulacoseira ambigua, Cyclotella stelligera, Aulacoseira granulata and Achnanthes minutissima. In EXP-1, two highest species in abundance, A. ambigua and A. granulata were highly grown in MTW, while Achnanthes minutissima high in HTW adversely. These results indicate that the introduction of turbid water can play an important role in the shift of water quality and benthic diatom community in stream ecosystem, especially inflow of soil water in low current velocity.

Effect of Highly Concentrated Turbid Water on the Water Quality and Periphytic Diatom Community in Artificial Channel (인공수로에서 고농도 탁수가 수질 및 부착 규조류 군집에 미치는 영향)

  • Yoon, Sung-Ae;You, Kyung-A;Park, Ji-Hyoung;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.75-84
    • /
    • 2011
  • We examined the effect of the turbid water on the periphytic diatom community in an artificial stream system. The artificial stream was constructed with transparent acryl and composed of four channels. Each channel ($20\;cm{\times}200\;cm{\times}40\;cm$) was supplied continuously with eutrophic lake water. In order to the freely colonize and grow diatoms, artificial substrate was installed with commercial slide glass soaked in 1% agar. Prior to introducing turbid water, the artificial stream was operated with lake water for 6 days to permit the propagation of diatom community on the substrates. The turbid water prepared with sediment sieved with ${\varphi}$ $64\;{\mu}m$ at $2\;g\;L^{-1}$ (final concentration, 300 NTU) was provided daily for 50 minute duration. The experiment was conducted for 7 days with manipulated experimental condition of light ($50{\sim}80\;{\mu}mol\;m^{-2}s^{-1}$, light:dark=24:0), temperature ($10{\pm}1^{\circ}C$), and flow rate ($0.31\;cm\;s^{-1}$). Sampling and analysis were conducted daily for water quality and diatom. Turbidity of the water varied 162.2~173.2 NTU during the experiment. After introduction of turbid water, DO, pH and TN were decreased, while SS and TP increased significantly. A total of 14 genera and 47 species of diatoms was observed on the artificial substrates during the experimental period. Of these, Navicula appeared to be a most dominant genus with 10 species, followed by Cymbella (6 species), Fragilaria (6 species) and Gomphonema (5 species). Achnanthes minutissima was the most dominant species (>70% of total frequency) in both control and treatment experiments. Increase in diatom abundance lasted for three days since turbid water introduction, after that they gradually decreased by the termination of the experiment. These results suggest that frequent supply of highly-concentrated turbid water significantly decreases the periphytic diatom community, and retard the recovery of the stable food-web within the stream.

The Distribution of DOM and POM and the Composition of Stable Carbon Isotopes in Streams of Agricultural and Forest Watershed Located in the Han River System (한강수계 농경지역 하천과 삼림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비)

  • Kim, Jai-Ku;Kim, Bom-Chul;Jung, Sung-Min;Jang, Chang-Won;Shin, Myoung-Sun;Lee, Yun-Kyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The runoff characteristics of organic matter in turbid water were investigated in eleven tributary streams of the Han River system, Korea. The flow-weighted event mean concentrations of organic matter ranged from 1.5 to 3.2 mg $L^{-1}$ of DOM and 2.2 of 29.1 mg $L^{-1}$ of POM, respectively. The SUVA value which reflects the proportion of humic substance in organic matters was higher during the rainfall season, meaning that the runoff of refractory form increase in this period. Stable carbon isotope ratios of both POM and DOM were different among streams, which reflect the sources of organic matter. DOM isotope ratios were less depleted of $^{13}C$ than that of POM by approximately 1 to $2%_{\circ}$ ${\delta}^{13}C$ of the several turbid streams (the Mandae Stream, the Jawoon Stream, and the Daegi stream) were heavier than those of clear streams. ${\delta}^{13}C$ values in the turbid upstream tributaries were similar to those of downstream reaches (such as the Soyang River, the Sum River, and the Seo River). From the ${\delta}^{13}C$ analysis of POM it could be calculated that $C_4$ pathway contributed approximately 15.9 to 23.6% of organic matter in several turbid upstream sites, and over 20% in the three sites of large downstream reaches. On the contrary it contributed only 9.1 to 12.8% in clear streams of forest watersheds. In the Soyang River, $C_4$ pathway organic matter contributed 8.8% of the DOM pool.

The Analysis of Water Quality and Suspended Solids Effects against Transparency of Major Artificial Reservoirs in Korea. (우리나라 주요 인공호의 투명도에 대한 수질 및 수중 부유물 영향 분석)

  • Kong, Keon-Hwa;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.221-231
    • /
    • 2009
  • This study was carried out to comparatively identify characteristics of turbid water influence in Imha Reservoir, Soyang Reservoir, and Daecheong Reservoir in Korea. We used 3 years dataset from 2002 to 2004 and analyzed seasonal water quality characteristics, particular parameters in association with turbidity, and light transparency to figure out the trends. All parameters to be used in the study were total phosphate (TP), total nitrogen (TN), chlorophyll-${\alpha}$ (Chl), suspended solids (SS), Secchi depth (SD), conductivity, and verticallight extinction coefficienct($K_d$), euphotic zone ($Z_{eu}$), and critical depth ($Z_p$). All parameters depend on season and watershed. Suspended solids from Soyang Reservoir were usually caused by TP, mainly related to living wastes and agricultures in upper stream. Daecheong Reservoir was influenced by organic matters related to large phytoplankton biomass in summer and inorganic suspended solids by nutrients in the winter. However, in case of Imha Reservoir, turbid water, consisted in silt and clay through heavy precipitation remained in the waterbody to decrease water transparency along with TP and caused the light limitation in winter. Overall results suggest that it was necessary to establish various management programs because the reasons occurring turbidity were varied according to the reservoir circumstances.

Dynamics of Turbid Water in a Korean Resernvoir with Selective Withdrawal Discharges (선택 취수하는 저수지에서 탁수의 동태)

  • Shin, Jae-Ki;Jeong, Seon-A;Choi, Il-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.423-430
    • /
    • 2004
  • This study intended to understand movements of turbid water in selective with drawal reservoirs before and after summer monsoon. Mean rainfall during November-May was low, compared to that during June-October. The reservoir water was discharged through watergates when previous rainfall and inflow exceeded 50 mm and $80\;m^3s^{-1}$, respectively. Intake towers were generally used except for the period of the high runoff. Average turbidity in gown-reservoir showed a difference of 29.9 NTU between premonsoon and postmonsoon. Diameter of particles of turbid water ranged between 0.435 and $482.9\;{\mu}m$. Fine particles such as clay were much denser than the larger particle. In the whole stations, clay component was relatively higher with a proportion of that in the particle distribution. Particle composition of turbid water showed that clay consisted of 94.4-98.9% and silt made of 1.1-5.6%. Analysis on turbid water movements derived from particle distribution showed a linear increase from the deep layer toward the surface layer in lower area of a reservoir. This was closely related with the hydraulic behavior of the reservoir, and heavily affected by the discharges through selective withdrawal towers and watergates. Turbid water originated from stream sediments in the middle area then resuspended in the down-reservoir causing a movement between the surface and middle layers of the reservoir. Therefore, such phenomenon needs to be understood for reservoir water quality management.

Characteristics of Spatial Variability in Water Quality on Stream of Lake Doam Watershed (강우시 및 비강우시 수질 모니터링을 통한 도암호 탁수 발생 원인 분석)

  • Kwon, Hyeokjoon;Lee, Jaewan;Lim, Jungha;Woo, Soomin;Kim, Jonggun;Lim, KyeongJae;Kim, Dongjin;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.43-50
    • /
    • 2020
  • The Doam Lake watershed is one of the non-point source management areas announced by the Ministry of Environment, and is a constant problem for the stream ecosystem dut to Storm water. In this study, a total of 48(rainfall) and 47(non-rainfall) sites were investigated for the entire watershed (Samyangcheon, Chahangcheon, Hoenggyecheon, Yongpyeongcheon, Songcheon, Lake Doam) on August 15, 2019 and on October 18, 2019 to estimate the source of turbid water in the Doam Lake watershed. Subsequently, water quality analysis was performed on Suspended Soild (SS), Turbidity, Total Phosphorus (TP), Total Nitrogen (TN), and Biochemical Oxygen Demands (BOD) and correlation among water quality parameters was analyzed based on the analyzed samples. As a result, most of the turbid water generated during rainfall was in highland fields. During rainfall, Hoengyecheon had the highest average SS concentration among all streams, and during non-rainfall, the average SS concentration was highest in Yongpyeongcheon, so the two stream were selected as vulnerable areas. However, since Yongpyeongcheon may be a temporary phenomenon due to river construction, additional continuous monitoring is required. Therefore, in the Doam Lake watershed, intensive management is required for vulnerable areas.