• Title/Summary/Keyword: TTIP

Search Result 81, Processing Time 0.027 seconds

Photocatalytic Properties of TiO2 According to Manufacturing Method (제조방법에 따른 TiO2의 광촉매 특성 분석)

  • Lee, Hong Joo;Park, Yu Gang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.156-161
    • /
    • 2018
  • $TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

Synthesis of Titanium Dioxides Using Low Temperature Combustion Method and Photocatalytic Decomposition of Methylene Blue (저온연소법에 의한 이산화티탄의 합성 및 메틸렌블루의 광촉매 분해반응)

  • Baek, Seung Hee;Jung, Won Young;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.329-334
    • /
    • 2009
  • Yttrium ions doped $TiO_2$ particles have been prepared using a low temperature combustion method. The physical properties were investigated, together with the activity of $TiO_2$ particles as a photocatalyst for the decomposition of methylene blue. From XRD results, the major phase of all the $TiO_2$ particles prepared under basic condition was an anatase structure but a rutile peak was observed when they are prepared under acidic condition. The crystallite size of $TiO_2$ particles was decreased as the molar ratio of CA/TTIP increased. The photocatalytic activity increased with an increase of CA/TTIP molar ratio and pH in the solution. In addition, the doping of 1.0 mole% yttrium ion on the $TiO_2$ enhanced the photocatalytic activity and showed the higher activity than commercial P-25 catalyst.

Synthesis and Analysis of TiO$_2$ Particles Using an Electrically Heated Tube Furnace (전기가열 튜브로를 이용한 광촉매 TiO$_2$ 입자의 제조 및 촉매 특성 분석)

  • 현정은;배귀남;이태규
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.401-402
    • /
    • 2003
  • TiO$_2$는 광촉매로서 자외선이 조사되면 여기상태로 되어 광활성을 나타내므로, 휘발성 유기화합물(VOCs), 악취, 중금속 물질 등을 제어하는데 널리 사용되고 있다(Lee and Biswas, 1998). TiO$_2$는 기상 및 액상 등 여러 가지 방법으로 제조되고 있는데(Morooka et al., 1989), 본 연구에서는 기상 방법의 하나인 전기가열 튜브로를 이용하여 TiOs 입자를 제조하였다. 즉, TTIP(titanium isopropoxide, Ti[OCH($CH_3$)$_2$]$_4$)와 공기를 전기가열 튜브로의 d열원을 이용하여 반응시키는 방법을 사용하였다. TiO2의 광활성에 영향을 미치는 변수로는 전기로의 온도, TTIP의 초기 농도, carrier gas의 유량, 산화시키기 위한 산소의 양, 수분의 양 등이 있다. (중략)

  • PDF

Effect of Alcohol Solvents and Calcination Temperature on the Synthesis of Titanium Dioxide Particles ($TiO_2$ 입자 제조에 있어 용매 종류와 소성온도 영향)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.473-482
    • /
    • 2009
  • Titanium dioxide particles are used as cosmetics, pigments, photocatalysts, adsorbents, catalytic supports, and sensors. The $TiO_2$ particles were prepared by the precipitation in TTIP/Solvent mixtures and calcined at different temperatures. The resulting materials were characterized by XRD and SEM testing techniques. The $TiO_2$ particles phase composition was determined by XRD ranging from amorphous to crystalline anatase and rutile largely proportional to the calcination temperature.

Recent Developments in the EU Investment Policy : Towards an Investment World Court?

  • Giupponi, Belen Olmos
    • Journal of Arbitration Studies
    • /
    • v.26 no.3
    • /
    • pp.175-230
    • /
    • 2016
  • The controversies that have surrounded the negotiation of both the Comprehensive Economic and Trade Agreement (CETA) and the Transatlantic Trade and Investment Partnership (TTIP) have underlined the difficulties arising out from the adoption of a truly common EU investment policy. Non-governmental organizations have called into question transparency and legitimacy of international investment arbitration during the negotiations. The article presents a reflection about current developments of the EU investment policy addressing, in particular, the criticisms towards the whole investor-to-State system and the EU's efforts in developing a "tailor-made" investment agreement and Investor-to-State Dispute resolution system. Along these lines, the article critically assesses the recently announced proposal for the establishment of an 'Investment Court System' put forward by the EU during the TTIP negotiations.

An Experimental Study on Composition Characteristics of SiO$_2$/TiO$_2$/Multicomponent Particle Generated in a Coflow Diffusion Flame (화염중 발생하는 SiO$_2$/TiO$_2$/다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-O;Seo, Jeong-Su;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • Chemical compositions of polydisperse SiO$_2$/TiO$_2$multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. SiO$_2$/TiO$_2$multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP(titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor, flow rate of carrier gas $N_2$was fixed at 0.6lpm for TTIP, at 0.1lpm for TEOS. In-situ sampling probe was used to supply particles into DMA(differential mobility analyzer) which was calibrated with using commercial DMA(TSI, model 3071A) and classifying monodisperse multicomponent particles. Classified monodisperse particles were collected with electrophoretic collector. The distributions of composition from particles to particle were determined using EDS(energy dispersive spectrometry) coupled with TEM(transmission electron microscope). The chemical(atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the chemical(atomic) composition of SiO$_2$decreased with the height from burner surface and the composition of SiO$_2$and TiO$_2$approached to the value of 1 to 1 fat downstream. It is also found that the composition of SiO$_2$decreases as the mobility diameter of aggregate increases.

An Experimental Study on Composition Characteristics of $SiO_2/TiO_2$ Multicomponent Particle in Coflow Diffusion Flame (화염중 발생하는 $SiO_2/TiO_2$ 다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-Oh;Suh, Jeong-Soo;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.441-446
    • /
    • 2000
  • Chemical compositions of monodisperse $SiO_2/TiO_2$ multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. $SiO_2/TiO_2$ multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP (titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor theoretically, flow rate of carrier gas $N_2$ was fixed at 0.61pm for TTIP, at 0.11pm for TEOS. In situ sampling probe was used to supply particles into differential mobility analyzer(DMA) which was calibrated with using commercial DMA(TSI 3071A) and classifying monodisperse multicomponent particles. Classified particles were collected with electrophoretic collector. The distributions of composition from particle to particle were determined using EDS (energy dispersive spectrometry) coupled with TEM (transmission electron microscope). The chemical (atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the atomic composition of $SiO_2$ decreased with the height from burner surface and the composition of $SiO_2$ and $TiO_2$ approached to the value of 1 to 1 in far downstream. It is also found that the composition of $SiO_2$ decreases as the mobility diameter of aggregate increases.

  • PDF

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

Synthesis of Au/TiO2 Core-Shell Nanoparticles by Using TTIP/TEOA Mixed Solution (TTIP/TEOA 혼합용액을 이용한 Au/TiO2 Core-Shell 구조 나노입자 합성)

  • Kwon, Hyun-Woo;Lim, Young-Min;Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.524-528
    • /
    • 2006
  • On the synthesis of Au/$TiO_2$ core-shell structure nanoparticle, the effect of concentration of $Ti^{4+}$ and reaction temperature on the morphology and optical property of Au/$TiO_2$ core-shell nanoparticles is examined. A gold colloid was prepared by $HAuCl_4{\cdot}4H_2O\;and\;C_6H_5Na_3{\cdot}2H_2O$. Titanium stock solution was prepared by mixing solution of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentrations of $Ti^{4+}$ stock solution were adjusted to $10.01{\sim}0.3$ mM, and then the gold colloid is added to the $Ti^{4+}$ stock solution. Au/$TiO_2$ core-shell structure nanoparticles could be prepared by the hydrolysis of the $Ti^{4+}$ stock solution at $80^{\circ}C$. The size of synthesized Au nanoparticles was 15 nm. The thickness of $TiO_2$ shell on the surface of gold particles was about 10 nm. The absorption peak of synthesized Au/$TiO_2$ core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of $TiO_2$ shell on the surface of gold particles. The good $TiO_2$ shell is produced when $Ti^{4+}$ concentration is varied between 0.01 and 0.05 mM, and reaction temperature is maintained at $80^{\circ}C$. The crystal structure of $TiO_2$ shell was amorphous.

Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process (에어로졸공정에 의한 다공성 TiO2분말의 제조 및 공극특성)

  • Chang, Han Kwon;Jang, Hee Dong;Park, Jin Ho;Cho, Kuk;Kil, Dae Sup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.479-485
    • /
    • 2008
  • Porous $TiO_2$ nanostructured particles containing both mesopores and macropores were fabricated by utilizing an aerosol templating method from two kinds of starting materials (colloidal mixture of $TiO_2$ nanoparticles and PS particles, and that of TTIP solution and PS particles). The effects of mixing ratio of PS to $TiO_2$ and reactor temperature on the particle properties were investigated. When $TiO_2$ nanoparticles were used as starting materials, the increase of macropores number was observed by SEM and the specific surface area and total pore volume were increased from $31.6m^2/g$ to $39.1m^2/g$ and $0.068cm^3/g$ to $0.089cm^3/g$, respectively, by increasing the weight mixing ratio of $PS/TiO_2$ from 0.79 to 1.31. When TTIP was used as precursor, the specific surface area and mesopore volume of particles prepared at same condition decreased by 67% and 75%, respectively.