• Title/Summary/Keyword: TT

Search Result 694, Processing Time 0.023 seconds

Seasonal Variations of Nitrifying Bacteria in Agricultural Reservoir (농업용 저수지에서의 질화세균의 계절적인 변화)

  • Lee, Hee-Soon;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.152-159
    • /
    • 2002
  • The seasonal variations of nitrifying bacterial population sampled from 3 sites in Moon-Chon reservoir were analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes from August 2000 until July 2001. In addition, physico-chemical parameters such as temperature, pH, chi-a and DOC were measured to determine correlations between those factors and the size of nitrifying bacterial populations. Total bacterial numbers varied in the range of $0.8{\sim}1.5{\times}10^6\;cells/ml$ independent of sites and had the maximal values in March at all 3 stations. The ratio of eubacteria to total bacteria ranged from 44.9% to 79.5%, and the ratio of each nitrifying bacteria to eubacterial numbers reached only $1.0{\sim}7.4%$. The variations of ammonia-oxidizing bacteria ranged from $1.1{\times}10^4$ to $3.0{\times}10^4\;cells/ml$ without noticeable peak values whereas those of nitrite-oxidizing bacteria varied in $1.3{\sim}5.7{\times}10^4\;cells/ml$ with the increasing tendency in winter regardless of the sites. Moreover it was observed that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria. Total bacterial numbers correlated with water temperature (r = 0.355, p<0.05) and DOC (r = 0.58G, p<0.01) positively whereas nitrite-oxidizing bacteria correlated with temperature (r = -0.416, p<0.05) and pH (r = -0.568, p = 0.001) negatively. In addition, DOC represented good correlations with eubacterial numbers (r = 0.448, p<0.01). These results indicate that temperature, DOC and pH might be one of the main factors affecting variations of bacterial populations in the aquatic ecosystem. It was also suggested that FISH method is a useful tool for detection of slow growing nitrifying bacteria.

Association of SNPs in the HNF4α Gene with Growth Performance of Korean Native Chickens (한국 재래계의 HNF4α 유전자 내 SNP와 성장과의 연관성 분석)

  • Yang, Song-Yi;Choi, So-Young;Hong, Min-Wook;Kim, Hun;Kwak, Kyeongrok;Lee, Hyojeong;Jeong, Dong Kee;Sohn, Sea Hwan;Hong, Yeong Ho;Lee, Sung-Jin
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.253-260
    • /
    • 2018
  • The hepatocyte nuclear factor 4 alpha ($HNF4{\alpha}$) gene is related to lipid transport, including abdominal fat and growth, in chickens. Interestingly, the A543G SNP within the $HNF4{\alpha}$ gene has previously been reported to be associated with body weight in both broilers and Korean native chickens (KNCs). However, its exact position within the HNF4 is not yet reported. This study aimed to identify the position of the A543G SNP and to identify additional SNPs that can be used as genetic markers in KNCs. A total of 128 KNCs were used for the sequencing and analysis of these genetic associations. As a result, A543G SNP was located in intron 4 of the $HNF4{\alpha}$ gene; it is reported as rs731246957 in the NCBI database. Fourteen SNPs were detected in the sequenced portion of the $HNF4{\alpha}$ gene; three of these, rs731246957, rs736159604 and new SNP, intron 6 (249), were significantly related with growth in the chickens. In this study, the TT genotype of rs731246957, previously reported as A543G SNP, the GG genotype of rs736159604 and GT of new SNP have are highly associated with body weight from birth to 40 weeks of age in KNCs (P<0.01). These results suggest that rs736159604, rs731246957 and intron 6 (249) SNPs within the $HNF4{\alpha}$ gene could function as growth-related markers in the selective breeding of KNCs.

Analysis of domestic and overseas coastal groundwater management laws and policies (국내외 해안 지하수관리 법·정책 사례 분석)

  • Shim, Young-Gyoo;Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.633-643
    • /
    • 2024
  • Many coastal countries have developed and used a wide range of technologies and policy measures to protect freshwater aquifers and groundwater resources from seawater intrusion, and have established and implemented a foundation to legally and institutionally support them. This study covers coastal states in the eastern United States, the Netheland, India and Japan. The goal of this study is to analyze each country's legal and policy measures for coastal groundwater management. By introducing Jeju Island's groundwater standard level system, we aim to provide a basis for future discussions on groundwater management measures not only in Jeju Island but also in coastal areas of Korea. As a result of the analysis, despite the various contents and aspects of coastal groundwater management based on local issues and characteristics around the world, in order to achieve the common goal of securing a stable amount of groundwater withdrawal and preventing seawater intrusion and to maximize the efficiency of groundwater management, it is understood that attempts are being made to establish optimal management measures, laws, systems, and policies based on several key factors. First, considering the hydrogeological characteristics and status of coastal groundwater, a separate special management system is being established and implemented within the scope of the national groundwater management system. In addition, preventing and maintaining groundwater level decline through limiting the amount of groundwater withdrawal and preventing seawater intrusion are key policy goals and policy tools, and it is suppored by research and development. Finally, tt was found that synergy effects are being sought by using various other policy tools and measures in a complex manner.

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.