• Title/Summary/Keyword: TSV Fault

Search Result 3, Processing Time 0.019 seconds

TSV Defect Detection Method Using On-Chip Testing Logics (온칩 테스트 로직을 이용한 TSV 결함 검출 방법)

  • Ahn, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1710-1715
    • /
    • 2014
  • In this paper, we propose a novel on-chip test logic for TSV fault detection in 3-dimensional integrated circuits. The proposed logic called OTT realizes the input signal delay-based TSV test method introduced earlier. OTT only includes one F/F, two MUXs, and some additional logic for signal delay. Thus, it requires small silicon area suitable for TSV testing. Both pre-bond and post-bond TSV tests are able to use OTT for short or open fault as well as small delay fault detection.

TSV Fault Detection Technique using Eye Pattern Measurements Based on a Non-Contact Probing Method (Eye 패턴을 사용한 비접촉 형태의 TSV 고장 검출 기법)

  • Kim, Youngkyu;Han, Sang-Min;Ahn, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.592-597
    • /
    • 2015
  • 3D-IC is a novel semiconductor packaging technique stacking dies to improve the performance as well as the overall size. TSV is ideal for 3D-IC because it is convenient for stacking and excellent in electrical characteristics. However, due to high-density and micro-size of TSVs, they should be tested with a non-invasive manner. Thus, we introduce a TSV test method on test prober without a direct contact in this paper. A capacitive coupling effect between a probe tip and TSV is used to discriminate small TSV faults like voids and pin-holes. Through EM simulation, we can verify the size of eye-patterns with various frequencies is good for TSV test tools and non-contact test will be promising.

Yield Enhancement Techniques for 3D Memories by Redundancy Sharing among All Layers

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.388-398
    • /
    • 2012
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) will likely be the first commercial applications of 3D integrated circuit technology. A 3D memory yield can be enhanced by vertical redundancy sharing strategies. The methods used to select memory dies to form 3D memories have a great effect on the 3D memory yield. Since previous die-selection methods share redundancies only between neighboring memory dies, the opportunity to achieve significant yield enhancement is limited. In this paper, a novel die-selection method is proposed for multilayer 3D memories that shares redundancies among all of the memory dies by using additional TSVs. The proposed method uses three selection conditions to form a good multi-layer 3D memory. Furthermore, the proposed method considers memory fault characteristics, newly detected faults after bonding, and multiple memory blocks in each memory die. Simulation results show that the proposed method can significantly improve the multilayer 3D memory yield in a variety of situations. The TSV overhead for the proposed method is almost the same as that for the previous methods.