• Title/Summary/Keyword: TSP Algorithm

Search Result 147, Processing Time 0.027 seconds

S-MINE Algorithm for the TSP (TSP 경로탐색을 위한 S-MINE 알고리즘)

  • Hwang, Sook-Hi;Weon, Il-Yong;Ko, Sung-Bum;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.73-82
    • /
    • 2011
  • There are a lot of people trying to solve the Traveling Salesman Problem (TSP) by using the Meta Heuristic Algorithms. TSP is an NP-Hard problem, and is used in testing search algorithms and optimization algorithms. Also TSP is one of the models of social problems. Many methods are proposed like Hybrid methods and Custom-built methods in Meta Heuristic. In this paper, we propose the S-MINE Algorithm to use the MINE Algorithm introduced in 2009 on the TSP.

DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem (Traveling Salesman Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Gyeong;Yun, Hyo-Gun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • DNA computing has been using to solve TSP (Traveling Salesman Problems). However, when the typical DNA computing is applied to TSP, it can`t efficiently express vertices and weights of between vertices. In this paper, we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to efficiently express vertices and weights of between vertices for TSP. We applied ACO to TSP and as a result ACO could express DNA codes which have variable lengths and weights of between vertices more efficiently than Adleman`s DNA computing algorithm could. In addition, compared to Adleman`s DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for a shortest path in a short time.

Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem (SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF

2 Dimensional TSP Modeling Using Finite Element Method (유한 요소법을 이용한 2차원 TSP 모델링)

  • Lee, Hong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • TSP (Tunnel Seismic Profiling) survey is a technique for imaging and characterizing geological structures ahead of a tunnel face. The seismic modeling algorithm and the synthetic data could be helpful for TSP surveys. However, there is few algorithm to describe the propagation of the elastic waves around the tunnel. In this study, existing 2-dimensional seismic modeling algorithm using finite element method was modified to make a suitable algorithm for TSP modeling. Using this algorithm, TSP modeling was practiced in some models. And the synthetic data was analyzed to examine the propagation characteristics of the elastic waves. First of all, the modeling for the homogeneous tunnel model was practiced to examine the propagation characteristics of the direct waves in the vicinity of the tunnel. And the algorithm was applied to some models having reflector which is perpendicular or parallel to the excavation direction. From these, the propagation characteristics of the reflected waves were examined. Furthermore, two source-receiver arrays were used in respective models to investigate the properties of the two arrays. These modeling algorithm and synthetic data could be helpful in interpreting TSP survey data, developing inversion algorithm and designing new source-receiver arrays.

A New Heuristic Algorithm for Traveling Salesman Problems (외판원문제에 대한 효율적인 새로운 경험적 방법 개발)

  • 백시현;김내헌
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.21-28
    • /
    • 1999
  • The TSP(Traveling Salesman Problem) is one of the most widely studied problems in combinatorial optimization. The most common interpretation of TSP is finding a shortest Hamiltonian tour of all cities. The objective of this paper proposes a new heuristic algorithm MCH(Multi-Convex hulls Heuristic). MCH is a algorithm for finding good approximate solutions to practical TSP. The MCH algorithm is using the characteristics of the optimal tour. The performance results of MCH algorithm are superior to others algorithms (NNH, CCA) in CPU time.

  • PDF

A Learning based Algorithm for Traveling Salesman Problem (강화학습기법을 이용한 TSP의 해법)

  • Lim, JoonMook;Bae, SungMin;Suh, JaeJoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.61-73
    • /
    • 2006
  • This paper deals with traveling salesman problem(TSP) with the stochastic travel time. Practically, the travel time between demand points changes according to day and time zone because of traffic interference and jam. Since the almost pervious studies focus on TSP with the deterministic travel time, it is difficult to apply those results to logistics problem directly. But many logistics problems are strongly related with stochastic situation such as stochastic travel time. We need to develop the efficient solution method for the TSP with stochastic travel time. From the previous researches, we know that Q-learning technique gives us to deal with stochastic environment and neural network also enables us to calculate the Q-value of Q-learning algorithm. In this paper, we suggest an algorithm for TSP with the stochastic travel time integrating Q-learning and neural network. And we evaluate the validity of the algorithm through computational experiments. From the simulation results, we conclude that a new route obtained from the suggested algorithm gives relatively more reliable travel time in the logistics situation with stochastic travel time.

Analysis for a TSP Construction Scheme over Sensor Networks (센서네트워크 상의 TSP 경로구성 방법에 대한 분석)

  • Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.1-6
    • /
    • 2010
  • In Sensor Networks, the problem of finding the optimal routing path dynamically, which passes through all terminals or nodes once per each, may come up. Providing a generalized scheme of approximations that can be applied to the kind of problems, and formulating the bounds of the run time and the results of the algorithm made from the scheme, one may evaluate mathematically the routing path formed in a given network. This paper, dealing with Euclidean TSP(Euclidean Travelling Sales Person) that represents such problems, provides the scheme for constructing the approximated Euclidean TSP by parallel computing, and the ground for determining the difference between the approximated Euclidean TSP produced from the scheme and the optimal Euclidean TSP.

A DNA Sequence Generation Algorithm for Traveling Salesman Problem using DNA Computing with Evolution Model (DNA 컴퓨팅과 진화 모델을 이용하여 Traveling Salesman Problem를 해결하기 위한 DNA 서열 생성 알고리즘)

  • Kim, Eun-Gyeong;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.222-227
    • /
    • 2006
  • Recently the research for Traveling Salesman Problem (TSP) using DNA computing with massive parallelism has been. However, there were difficulties in real biological experiments because the conventional method didn't reflect the precise characteristics of DNA when it express graph. Therefore, we need DNA sequence generation algorithm which can reflect DNA features and reduce biological experiment error. In this paper we proposed a DNA sequence generation algorithm that applied DNA coding method of evolution model to DNA computing. The algorithm was applied to TSP, and compared with a simple genetic algorithm. As a result, the algorithm could generate good sequences which minimize error and reduce the biologic experiment error rate.

Improved Ant Colony System for the Traveling Salesman Problem (방문판매원 문제에 적용한 개선된 개미 군락 시스템)

  • Kim, In-Kyeom;Yun, Min-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.823-828
    • /
    • 2005
  • Ant Colony System (ACS) applied to the traveling salesman problem (TSP) has demonstrated a good performance on the small TSP. However, in case of the large TSP. ACS does not yield the optimum solution. In order to overcome the drawback of the An for the large TSP, the present study employs the idea of subpath to give more irormation to ants by computing the distance of subpath with length u. in dealing with the large TSP, the experimental results indicate that the proposed algorithm gives the solution much closer to the optimal solution than does the original ACS. In comparison with the original ACS, the present algorithm has substantially improved the performance. By utilizing the proposed algorithm, the solution performance has been enhanced up to $70\%$ for some graphs and around at $30\%$ for averaging over all graphs.

A Development of Optimal Travel Course Recommendation System based on Altered TSP and Elasticsearch Algorithm (변형된 TSP 및 엘라스틱서치 알고리즘 기반의 최적 여행지 코스 추천 시스템 개발)

  • Kim, Jun-Yeong;Jo, Kyeong-Ho;Park, Jun;Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1108-1121
    • /
    • 2019
  • As the quality and level of life rise, many people are doing search for various pieces of information about tourism. In addition, users prefer the search methods reflecting individual opinions such as SNS and blogs to the official websites of tourist destination. Many of previous studies focused on a recommendation system for tourist courses based on the GPS information and past travel records of users, but such a system was not capable of recommending the latest tourist trends. This study thus set out to collect and analyze the latest SNS data to recommend tourist destination of high interest among users. It also aimed to propose an altered TSP algorithm to recommend the optimal routes to the recommended destination within an area and a system to recommend the optimal tourist courses by applying the Elasticsearch engine. The altered TSP algorithm proposed in the study used the location information of users instead of Dijkstra's algorithm technique used in previous studies to select a certain tourist destination and allowed users to check the recommended courses for the entire tourist destination within an area, thus offering more diverse tourist destination recommendations than previous studies.