• 제목/요약/키워드: TSK fuzzy Model

Search Result 65, Processing Time 0.023 seconds

Online Evolving TSK fuzzy identification (온라인 진화형 TSK 퍼지 식별)

  • Kim, Kyoung-Jung;Park, Chang-Woo;Kim Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.204-210
    • /
    • 2005
  • This paper presents online identification algorithm for TSK fuzzy model. The proposed algorithm identify structure of premise part by using distance, and obtain the parameters of the piecewise linear function consisting consequent part by using recursive least square. Only input space was considered in Most researches on structure identification, but input and output space is considered in the proposed algorithm. By doing so, outliers are excluded in clustering effectively. The existing other algorithm has disadvantage that it is sensitive to noise by using data itself as cluster centers. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. Model can be obtained through one pass and it is not needed to memorize many data in the proposed algorithm.

Design of Robust Fuzzy Controller for Load-Frequency Control of Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 전력 계통의 부하 주파수 제어를 위한 강인한 퍼지 제어기 설계)

  • Joo, Young-Hoon;Jeo, Sang-Won;Kwon, Oh-Sin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2000
  • A new robust load-frequency control methodology is proposed for nonlinear power systems with valve position limits of the governor in the presence of parametric uncertaines. The TSK fuzzy model is adopted and formulated for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stabilitry is presented in the sense of lyapunov for the TSK model with parametric uncertainties. The intekkigent digital redesign technique for the uncertain power systems is also studied. The effectiveness of the robust digital fuzzy controller disign mothod is demonstrated through a numerical simulation.

  • PDF

Building a Fuzzy Model with Transparent Membership Functions through Constrained Evolutionary Optimization

  • Kim, Min-Soeng;Kim, Chang-Hyun;Lee, Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.298-309
    • /
    • 2004
  • In this paper, a new evolutionary scheme to design a TSK fuzzy model from relevant data is proposed. The identification of the antecedent rule parameters is performed via the evolutionary algorithm with the unique fitness function and the various evolutionary operators, while the identification of the consequent parameters is done using the least square method. The occurrence of the multiple overlapping membership functions, which is a typical feature of unconstrained optimization, is resolved with the help of the proposed fitness function. The proposed algorithm can generate a fuzzy model with transparent membership functions. Through simulations on various problems, the proposed algorithm found a TSK fuzzy model with better accuracy than those found in previous works with transparent partition of input space.

Design of Adaptive PID Controller with Fuzzy Model (퍼지 모델을 이용한 적응 PID 제어기 설계)

  • 김종화;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.84-87
    • /
    • 2002
  • This paper presents an adaptive PID control scheme with fuzzy model for nonlinear system. TSK(Takagi-Sugeno-Kang) fuzzy model was used to estimate the error of control input, and the parameter of PID controller was adapted from the error The parameter of TSK fuzzy model was also adapted to plant by comparing the activity output of plant and model output. PID controller which was adapted the uncertainty of nonlinear plant and the change of parameter can be designed by using the presented method. The usefullness of algorithm which was proposed by the simulation of several nonlinear system was also certificated.

Parameters Identification of TSK Fuzzy Model using Modulating Function Method (변조 함수법을 이용한 TSK 퍼지모델의 파라미터 인식)

  • 류은태;정찬익;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.381-384
    • /
    • 2004
  • 본 논문에서는 변조 함수법을 이용하여 비선형 연속시스템의 퍼지모델 파라미터 인식을 위한 새로운 알고리즘을 제시하였다. 동력학 미분방정식은 미분항을 가지고 있기 때문에 입출력 데이터를 이용하여 퍼지모델 파라미터를 인식하는 경우 외란의 영향을 무시할 수 없으므로 퍼지모델 파라미터 인식이 어렵다. 그러나 변조 함수법을 이용하면 미분항을 소거할 수 있어 미분항이 없는 연립방정식으로부터 쉽게 퍼지모델 파라미터 인식이 가능하다 몇 개의 시뮬레이션을 통해 제안한 변조 함수법을 이용한 퍼지모델 파라미터 인식의 정확성과 유효성을 확인할 수 있었다.

  • PDF

Effective Gas Identification Model based on Fuzzy Logic and Hybrid Genetic Algorithms

  • Bang, Yonug-Keun;Byun, Hyung-Gi;Lee, Chul-Heui
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.329-338
    • /
    • 2012
  • This paper presents an effective design method for a gas identification system. The design method adopted the sequential combination between the hybrid genetic algorithms and the TSK fuzzy logic system. First, the sensor grouping method by hybrid genetic algorithms led the effective dimensional reduction as well as effective pattern analysis from a large volume of pattern dimensions. Second, the fuzzy identification sub-models allowed handling the uncertainty of the sensor data extensively. By these advantages, the proposed identification model demonstrated high accuracy rates for identifying the five different types of gases; it was confirmed throughout the experimental trials.

Robot Inverse Kinematics by Using Fuzzy Reasoning (퍼지추론법을 이용한 로버트 역기구학의 해)

  • Oh, Kab-Suk;Ko, Gyeong-Chun;Kang, Geun-Taek
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.4
    • /
    • pp.279-285
    • /
    • 1993
  • Robot inverse kinematics solution is a complex nonlinear equation and very time-consuming task. This paper propose to use TSK fuzzy reasoning for solving robot inverse kinematics. A fuzzy model of inverse kinematics is identified by using input-output data and the model is used to solve the inverse kinematics. To show that, when used in robot inverse kinematics, fuzzy model is simple and generates a fairly accurate solution, a fuzzy model of inverse kinematics for PUMA robot is constructed.

  • PDF

Adaptive PID Controller for Nonlinear Systems using Fuzzy Model

  • Zonghua Jin;Lee, Wonchang;Geuntaek Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.342-345
    • /
    • 2003
  • This paper presents an adaptive PID control scheme for nonlinear system. TSK(Takagi-Sugeno-Kang) fuzzy model is used to estimate the error of control input, and the parameter of PID controller are adapted using the error. The parameters of TSK fuzzy model are also adapted to plant. The proposed algorithm allows designing adaptive PID controller which is adapted to the uncertainty of nonlinear plant and the change of parameters. The usefulness of the proposed algorithm is also certificated by the several simulations.

  • PDF

A Multiple Model Approach to Fuzzy Modeling and Control of Nonlinear Systems

  • Lee, Chul-Heui;Seo, Seon-Hak;Ha, Young-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.453-458
    • /
    • 1998
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.

  • PDF