• Title/Summary/Keyword: TRNSYS 시뮬레이션

Search Result 62, Processing Time 0.017 seconds

Energy Saving Effect of the Night Purge Control using ERV in a School Building (전열교환형 환기시스템을 이용한 학교건물의 나이트 퍼지 적용 효과 분석)

  • Kim, Su-Yeon;Won, Jung-kwan;Kim, Jae-Hyung;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.421-427
    • /
    • 2016
  • The indoor temperature of a building increases during the day due to solar radiation. This behavior is significant in school buildings that are finished with high thermal capacity materials. Moreover, in school buildings, windows cannot be opened until the class has finished owing to the security policy of schools. Consequently, classrooms maintain a high temperature throughout the morning. It is thus important to remove the indoor heat before the commencement of classes in order to reduce the cooling energy needed. The Energy Recovery Ventilator (ERV) system is currently being installed in school buildings for ventilating the classrooms. Night-purge control using ERV can be a good strategy to cool the classroom in advance of the operation of the cooling system. However, the optimal operation method of the ERV for night-purge control has not yet been reported. In this study, the effect of night-purge control with ERV in school buildings is analyzed by simulation method. The results of this study showed that the energy saving effect of night-purge control with ERV is most effective in the case of 2 hours operation prior to the commencement of the first lass and when enthalpy based outdoor air cooling is used.

A Study on the Effective Adjustment of Building Insulation Performance and the Application of the Night Purge Ventilation System for Low Energy Building Design (저에너지건축물 설계를 위한 건축물 단열성능의 효과적 조정과 야간외기 도입에 따른 에너지 시뮬레이션 연구)

  • Yun, Hyun-Su;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.625-632
    • /
    • 2018
  • This study was done to reduce total energy demand based on resource shortage problems and to provide improvement points for more efficient adjustment of the high insulation standards for saving energy in Korea. The demand sensitivity was fully considered by varying the slope of each building. The energy performance of the building was maximized by the introduction of outdoor air at night. A final low-energy building model was developed with the two measures combined, and the short-term operation of the night-fuzzy ventilation system was simulated. The result showed a reduction of about 6 to 7 percent compared to the base model. The results could have many implications in terms of the need to conduct demand sensitivity analyses in architectural design.