• 제목/요약/키워드: TRNSYS 시뮬레이션

검색결과 61건 처리시간 0.028초

BES 프로그램을 이용한 온실의 에너지 관리 (A Review of Greenhouse Energy Management by Using Building Energy Simulation)

  • 아드난 라쉬드;이종원;이현우
    • 생물환경조절학회지
    • /
    • 제24권4호
    • /
    • pp.317-325
    • /
    • 2015
  • 본 논문에서는 온실작물 생육에 적절한 미기상환경을 제공하기 위한 최적의 조건을 찾아내기 위하여 TRNSYS 프로그램을 이용하여 온실의 구조 및 환경인자와 에너지공급기술들에 대하여 시뮬레이션을 실시한 연구논문들을 분석하였다. 본 연구의 목적은 온실에너지 관리를 위해 사용되고 있는 여러 가지 에너지시스템과 기술들에 관하여 검토하고 이들에 대해 TRNSYS 시뮬레이션을 통해 실시한 효율분석에 관하여 검토하는 것이다. 사용가능한 에너지자원과 다양한 외부기상조건에 따른 에너지절감기술들의 성능을 분석하기 위한 여러가지 시뮬레이션 모델들에 대해서도 검토하였다. 사용자가 정의하는 인자들을 사용하여 하이브리드 농업시설을 시뮬레이션 할 수 있는 TRNSYS 프로그램의 주요 구조들을 찾아내었다. 문헌검토에서 얻어진 결과를 토대로 TRNSYS 프로그램을 이용하여 온실의 에너지관리를 위한 시뮬레이션 모델을 개발하는데 필요한 몇 가지 중요한 결론들을 도출하였다. TRNSYS 프로그램은 앞으로 온실의 에너지 시뮬레이션을 수행하는데 크게 활용될 것으로 기대된다.

태양열 냉난방 부하산정을 위한 TRNSYS 동적 시뮬레이션 (TRNSYS Dynamic Simulation for Solar Heating and Cooling Load Estimations)

  • 최창용;고상철;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the heating and cooling load estimations for the library of a cultural center building located in Gwangju Korea by TRNSYS with Type 56 of multi-zone building components. In this study, energy rate control mode is selected and the design temperatures for heating and cooling are specified respectively as 20oC and 26oC. Reading rooms of the library are located on the third floor of the cultural center building, and this third floor space is modeled as the five thermal zones for the TRNSYS simulation. Among the five zones, attention is given to the two zones which are the reading rooms 1 and 2. Since these two zones are to be heated and cooled by the solar thermal system which is planned to be installed in the building, dynamic thermal behaviors of the two zones are analyzed by the heating and cooling load estimations.

동적시뮬레이션을 위한 시스템 멀티에어컨의 모델링 (Modelling of System Air-Conditioner for Dynamic Simulation)

  • 이윤종;김찬중;문제명;김철우;서형준;김경록;신행조;홍희기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.328-333
    • /
    • 2007
  • The purpose of this study is modelling of system air-conditioner for TRNSYS. System air-conditioner is operated by a variable capacity compressor and accommodated by multiple evaporators. By reason of these feature, realizing performance of system air-conditioner for TRNSYS was incomplete. In this study performance data of system air-conditioner and control logics are used to make system air-conditioner module for TRNSYS. Performance data contains total capacity, power input and capacity index of system air-conditioner. The simulation was carried out in a mode of temperature level control using TRNSYS 16. The simulation shows that the system air-conditioner model operate variable capacity and can compute capacity index and power input of system.

  • PDF

TRNSYS 시뮬레이션을 통한 시스템 에어컨의 구현과 타당성 검증 (Development of the TRNSYS Simulation Modules for System Air-Conditioner and Its' Verification)

  • 기현승;홍인표;박준원;강기남;송두삼
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.315-322
    • /
    • 2012
  • In these days, importance of HVAC system in office building is steadily growing in terms of thermal comfort and energy savings. As a energy efficient heating and cooling system, system air-conditioner which can be controlled distinctly and has a high COP is more widely adopted nowadays. However, the features and advantages of system air-conditioner were not reported well because system air-conditioner did not describe yet by conventional simulation methods such as TRNSYS, e-Quest, Energyplus, etc. In this study, by using the TRNSYS program which is able to show module implementation and building energy consumption analysis, system air-conditioner module will be proposed and validated through comparison between the simulation results and measurement results.

온돌 난방에 대한 동적 시뮬레이션 및 분석 (Method and Analysis of Dynamic Simulation for Ondol Heating)

  • 홍희기;김시환
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.375-382
    • /
    • 2010
  • Ondol heating, a kind of radiant floor heating, is a main method used in housing units in Korea. Building energy simulation including ondol and relevant facilities has not been performed due to its complexity. For evaluating energy consumption and indoor temperature variation, a new method should be proposed. At the present work, a dynamic simulation on ondol heating was tried by combining TRNSYS and EES. Characteristic functions for a pump, hot water coils and a gas boiler were simultaneously solved by EES, and calculated flow rates and supply temperature of hot water were provided as inputs of the active layer of TYPE 56 in TRNSYS. The results by the simulation on a typical housing unit in Korea shows a good trend in a viewpoint of actual behavior of ondol heating.

트랜시스를 이용한 지열 응답 함수 경계 조건 검증 및 시뮬레이션 모델 개발에 관한 연구 (Verification of the Boundary Conditions Used for Generating g-functions and Development of a TRNSYS Simulation Model Using g-functions)

  • 김의종
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.416-423
    • /
    • 2014
  • To verify different boundary conditions on the borehole wall, which are commonly used for generating g-function, the well-known TRNSYS simulation model, DST (Duct STorage), is employed. By letting the fluid circulation determine the borehole wall conditions, a DST-based g-function is induced with numerical processes proposed in this work. A new TRNSYS module is also developed to accommodate g-function data and predict dynamic outlet fluid temperatures. Results showed that the modified g-function, which is different from Eskilson's original g-function, is closer to the DST-based g-function. This implies that the uniform heat transfer rates over the height can be used for good approximation. In fact, simulations with the modified g-function showed similar results as the DST model, while Eskilson g-function case deviated from the DST model as time progressed.

태양광 발전 시스템의 시공간적 잠재성 평가 소프트웨어 개발 (Assessment of Distributed and Dynamic Potential of Photovoltaic Systems in Urban Areas)

  • 최요순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • This study presents a new method for coupling ArcGIS (popular GIS software) with TRaNsient SYstems Simulation (TRNSYS, reference software for researchers and engineers around the world) to use capabilities of the 4 and 5-parameter PV array performance models within the ArcGIS environment. Using the validated and industry-proven solar energy simulation models implemented in TRNSYS and other built-in ArcGIS functionalities, dynamic characteristics of distributed PV potential in terms of hourly, daily or monthly power outputs can be investigated with considerations of diverse options in selecting and mounting PV panels. In addition, the proposed method allows users to complete entire procedures in a single framework (i.e., a preliminary site survey using 3D building models, shading analyses to investigate usable rooftop areas with considerations of different sizes and shapes of buildings, dynamic energy simulation to examine the performances of various PV systems, visualization of the simulation results to understand spatially and temporally distributed patterns of PV potential). Therefore tedious tasks for data conversion among multiple softwares can be significantly reduced or eliminated. While the programming environment of TRNSYS is proprietary, the redistributable executable, simulation kernel and simulation engine of TRNSYS can be freely distributed to end-users. Therefore, GIS users who do not have a license of TRNSYS can also use the functionalities of solar energy simulation models within ArcGIS.

  • PDF

TRNSYS 기반 무창기공형 공기식 집열 시스템 부프로그램 개발에 관한 연구 (Study on Development of Subroutine based on TRNSYS for Unglazed Transpired Air Collector System)

  • 박준언;이의준;정모
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.81-90
    • /
    • 2003
  • UTAC(unglazed transpired air collector) system has unique advantage for space heating and tempering ventilation air over the conventional collector system such as flat plate and vacuum collector. UTAC can improve radiative and convective loss due to nonglazed component and enhanced plate surface configuration. and heating energy and its equivalent green house emission performance can be improved from the use of this like collector in building application. The Option D Calibration simulation approach of IPMVP(International Performance Measurement and Verification Protocol) in ESCO businesses has been recommended to use of the calibrated computer modules like these Energy-10. DOE2.1E and TRNSYS(transient system simulation). This study is to develop subroutine type-203 of TRNSYS15.2 program and appraise thermal performance of UTAC. With newely addeded subroutine type-203. 1) Thermal performance of unglazed transpired collector could be possible based on dimensionless variables such as efficiency and heat exchanger effectiveness. and 2) Assessement of energy consists of solar useful and insulation saving for UTAC could be possible.

태양열 냉.난방시스템의 열성능 분석 (Analysis of Thermal Performance of a Solar Heating & Cooling System)

  • 곽희열;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

제어 방식에 따른 지열 히트펌프 시스템의 성능 시뮬레이션 (Performance Simulation of Geothermal Heat Pump (GHP) System with Different Control Schemes)

  • 이두영;최재호;민경천;손병후
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제4권1호
    • /
    • pp.35-41
    • /
    • 2016
  • 지열 히트펌프 시스템에서 히트펌프 등 시스템 구성 요소의 에너지 소비량을 효율적으로 관리하면, 냉난방 성능을 더 높일 수 있다. 본 논문은 외기온도 제어 방식이 지열 시스템의 성능에 미치는 영향을 분석하였다. 또한 분석 결과를 현재 국내에서 주로 적용하는 제어 방식(Control-A)과 비교하였다. 이를 위해 상용 소프트웨어(TRNSYS 17)를 이용하여 가상 지열 시스템의 모델을 구축한 후, 시뮬레이션을 수행하였다. 외기 온도 제어 방식(Control-B)은 버퍼 탱크의 온도를 외기 온도에 따라 제어하기 때문에, 간절기 때 효과적이었다. 기존 제어 방식과 비교했을 때, 외기 온도 제어 방식은 히트펌프 전력 소비량을 7.7%(147 kWh 절감) 그리고 순환펌프 전력 소비량을 7.5%(28.1 kWh 절감) 줄일 수 있었다.