• Title/Summary/Keyword: TRMM TMI

Search Result 13, Processing Time 0.025 seconds

The Study on the Oceanic Surface Wind Retrieval using TRMM Microwave Imager (TRMM TMI를 이용한 해상풍 추정에 관한 연구)

  • Kim, Young-Seup;Hong, Gi-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.47-53
    • /
    • 2002
  • Ocean surface wind speed was estimated using TRMM (Tropical Rainfall Measurement Mission) TMI (TRMM Microwave/Imager) data. It is used the TRMM TMI brightness temperature and National Data Buoy Center's buoy winds speed dataset near North-America to estimate by the algorithm of the ocean surface wind speed retrieval over North America. Comparing with the buoy data by D-matrix equation, the result that RMSE, BIAS, and correlation coefficient are 2.19 $ms^{-1}$, 1.10 $ms^{-1}$, and 0.81, respectively. Therefore the estimated oceanic surface wind speed by TRMM TMI brightness temperature data show that available to ocean research over upper ocean.

  • PDF

Rainfall Characteristics in the Tropical Oceans: Observations using TRMM TMI and PR (열대강우관측(TRMM) 위성의 TMI와 PR에서 관측된 열대해양에서의 강우 특성)

  • Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.113-125
    • /
    • 2012
  • The estimations of the surface rain intensity and rain-related physical variables derived from two independent Tropical Rainfall Measuring Mission (TRMM) satellite sensors, TRMM Microwave Imager (TMI) and Precipitation Radar (PR), were compared over four different oceans. The precipitating clouds developed most frequently in the warmest sea surface temperature (SST) region of the west Pacific, which is 1.5 times more frequent than in the east Pacific and the tropical Atlantic oceans. However, the east Pacific exhibited the most intense rain intensity for the convective and mixed rain types while the tropical Atlantic showed the most intense rain intensity for all TMI rainy pixels. It was found that the deviation of TMI-derived rain rate yielded a big difference in region-to-region and rain type-to-type if the PR rain intensity value is assumed to be closer to the truth. Furthermore, the deviation by rain types showed opposite signs between convective and non-convective rain types. It was found that the region-to-region deviation differences reached more than 200% even though the selected tropical oceans have relatively similar geophysical environments. Therefore, the validation for the microwave rain estimation needs to be performed according to both rain types and climate regimes, and it also requires more sophisticated TMI algorithm which reflects the locality of rainfall characteristics.

RAINFALL ESTIMATION OVER THE TAIWAN ISLAND FROM TRMM/TMI DATA DURING THE TYPHOON SEASON

  • Chen, W-J;Tsai, M-D;Wang, J-L;Liu, G-R;Hu, J-C;Li, C-C
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.930-933
    • /
    • 2006
  • A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.

  • PDF

RAINFALL FROM TRMM-RADAR AND RADIOMETER

  • Park, K.W.;Kim, Y.S.;Gairola, R.M.;Kwon, B.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.528-530
    • /
    • 2003
  • We present here, some of the studies carried for estimation of rainfall over land and oceanic regions in and around South Korea. We use active and passive microwave measurements from TRMM ? TMI and Precipitation Radar (PR) respectively during a typhoon even named ? RUSA that took place during 30 Aug. 2002. We have followed due approach by Yao at. all (2002) and examined the performance of their algorithm using two main predictor variable, named as Scattering Index (SI) and Polarization Corrected Brightness Temperature (PCT) while using TMI data. The rainfall fnus estimated using PST and SI shows some Underestimation as compared to the 2A25 rainfall products from the PR in common area of overlap. A larger database thus would be used in future. To establish a new rain rate algorithm over Korean region based on the present case study.

  • PDF

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

Relationship between Tropical Cyclone Intensity and Physical Parameters Derived from TRMM TMI Data Sets (TRMM TMI 관측과 태풍 강도와의 관련성)

  • Byon, Jae-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.359-367
    • /
    • 2008
  • TRMM TMI data were used to investigate a relationship between physical parameters from microwave sensor and typhoon intensities from June to September, 2004. Several data such as 85GHz brightness temperature (TB), polarization corrected temperature (PCT), precipitable water, ice content, rain rate, and latent heat release retrieved from the TMI observation were correlated to the maximum wind speeds in the best-track database by RSMC-Tokyo. Correlation coefficient between TB and typhoon intensity was -0.2 - -0.4 with a maximum value in the 2.5 degree radius circle from the center of tropical cyclone. The value of correlation between in precipitable water, rain, latent heat, and typhoon intensity is in the range of 0.2-0.4. Correlation analysis with respect to storm intensity showed that maximum correlation is observed at 1.0-1.5 degree radius circle from the center of tropical cyclone in the initial stage of tropical cyclone, while maximum correlation is shown in 0.5 degree radius in typhoon stage. Correlation coefficient was used to produce regressed intensities and adopted for typhoon Rusa (2002) and Maemi (2003). Multiple regression with 85GHz TB and precipitable water was found to provide an improved typhoon intensity when taking into account the storm size. The results indicate that it may be possible to use TB and precipitable water from satellite observation as a predictor to estimate the intensity of a tropical cyclone.

Relationship between TRMM TMI observation and typhoon intensity (TRMM TMI 관측과 태풍강도와의 관련성)

  • Byon, Jae-Young;Park, Jong-Sook;Kim, Baek-Jo
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.224-227
    • /
    • 2007
  • 마이크로파 센서 자료를 이용하여 태풍 강도를 산출하고자 TRMM TMI로부터 관측된 자료와 태풍 강도의 최대 상관성을 나타내는 지역올 찾고 최적의 상관 변수를 선정하였다. 분석기간은 2004년 6월부터 9월까지 발생된 태풍으로써 18개의 사례이다. TMI로부터 관측된 85 GHz 채널의 밝기온도,구름내 총 수증기량,얼음양,강우 강도,잠열방출양이 태풍 강도와의 상관성 분석을 위한 변수로 분석되었다. 태풍의 강도는 RSMC-Tokyo에서 발표된 Best track의 최대 풍속 자료를 이용하였다. 위성 관측 변수를 태풍 중심으로부터 공간 평균하였을 때 반경 2.0-2.5도 정도의 평균거리에서 최대의 상관성을 보였다. 위성 자료로부터 태풍 중심 풍속을 추정하기 위하여 회귀분석을 하였다. Best track과의 오차는 85 GHz 밝기온도와 수증기량을 이용한 다중 회귀 분석에서 오차가 최소를 보였다. 한편, 태풍강도 예측을 위한 통계모델에 마이크로파 위성 자료를 예측인자로 입력하여 태풍강도의 정확도가 3-6%정도 향상됨을 보였다.

  • PDF

ESTIMATION RAIN RATE FROM MICROWAVE RADIOMETER

  • Park K. W.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.201-203
    • /
    • 2004
  • We present here, some of the studies carried for estimation of rainfall over land and oceanic regions in and around South Korea. We use active and passive microwave measurements from TRMM - TMI and Precipitation Radar (PR) respectively during a typhoon even named - RUSA that took place during 30 Aug. 2002. We have followed due approach by Yao at. all (2002) and examined the performance of their algorithm using two main predictor variable, named as Scattering Index (SI) and Polarization Corrected Brightness Temperature (PCT) while using TMI data. The rainfall rate estimated using PCT and SI shows some under-estimation as compared to the AWS rainfall products from the PR in common area of overlap. A larger database thus would be used in future. To establish a new rain rate algorithm over Korean region based on the present case study.

  • PDF

Estimation of Rainfall Intensity for MTSAT-1R Data using Microwave Rainfall (마이크로웨이브 강수량을 이용한 MTSAT-1R 위성의 강우강도 추정)

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.511-525
    • /
    • 2010
  • Rainfall intensity was estimated using the MTSAT-1R infrared channels and the microwave satellite precipitation data. Brightness temperature of geostationary satellite is matched temporal and spatial to a variety of microwave satellite(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) precipitation data. Rainfall intensity was calculated by the look -up table using relationships of MTSAT-1R brightness temperature and microwave precipitation. Estimated rainfall is verified using by precipitation of TRMM satellite(TRMM3B42) and ground rainfall as AWS from Jul. 21 2008 to Jul. 25 2008. The results of rainfall estimated TRMM 2A12(TMI) that validated by AWS and TRMM3B42 precipitation are represented highly 0.38 and 0.61 by correlation coefficient, 5.81 mm/hr and 2.44 mm/hr by RMSE, 0.79 and 0.84 by POD and 0.65 and 0.87 by PC, respectively. Overall, estimated rainfall using by microwave satellite calculated 5 mm/hr or more comparing by AWS and 5 mm/hr or more comparing by TRMM3B42 precipitation, respectively. Validation results of correlation coefficient are shown series of TRMM 2A12, AMSRE, SSM/I, AMSU-B and SSMIS.

LOW RESOLUTION RAINFALL ESTIMATIONS FROM PASSIVE MICROWAVE RADIOMETERS

  • Shin, Dong-Bin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.378-381
    • /
    • 2007
  • Analyses of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer (TMI) and precipitation radar (PR) data show that the rainfall inhomogeneity, represented by the coefficient of variation, decreases as rain rate increases at the low resolution (the footprint size of TMI 10 GHz channel). The rainfall inhomogeneity, however, is relatively constant for all rain rates at the high resolution (the footprint size of TMI 37 GHz channel). Consequently, radiometric signatures at lower spatial resolutions are characterized by larger dynamic range and smaller variability than those at higher spatial resolution. Based on the observed characteristics, this study develops a low-resolution (${\sim}40{\times}40$ km) rainfall retrieval algorithm utilizing realistic rainfall distributions in the a-priori databases. The purpose of the low-resolution rainfall algorithm is to make more reliable climatological rainfalls from various microwave sensors, including low-resolution radiometers.

  • PDF