• Title/Summary/Keyword: TRIGA

Search Result 85, Processing Time 0.022 seconds

TRIGA원자로의 폐지 현황

  • 서두환
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.300-305
    • /
    • 1994
  • TRIGA원자로는 1993년 현재, 세계 13개국에서 52기가 가동중에 있으며. 그70%가 20년 경과하였고, 이미 폐로된 것은 12기이다. 따라서, TRIGA원자로의 폐지(decommissioning)가 새로운 과제로 등장하고 있다. 본 보고는 TRIGA원자로의 폐지에 대한 특징과 문제점 등 그 현황을 조사한 결과가 기술되어 있다. 조사내용으로는 다음과 같은 항목이 검토되어 있다. 1) 폐로의 실시시기, 2) 폐로방법, 3) 폐기물 대책, 4) 사용후 연료 대책, 5) 비용.

  • PDF

Decontamination of Duct Waste Arising from the Decommissioning of TRIGA Research Reactor (TRIGA 연구로 해체 시 발생하는 덕트 폐기물의 제염)

  • 최왕규;이근우;정경환;오원진;박진호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.720-724
    • /
    • 2003
  • In order to develop the decontamination process for self-disposal with authorization of duct waste generated from the decommissioning of retired TRIGA research reactors, the surface characterization of duct specimen taken from TRIGA research reactor was carried out and the adequate decontamination method was selected. It can be known that the paint coated internal surface of duct is contaminated with $^{60}Co$and $^{137}Cs$, which are penetrated into the paint layer and incorporated into zinc plated surface of galvanized iron as the material of duct. Two step chemical decontamination process, in which sodium hydroxide and sulfuric acid solutions are used in turn, is quite successful to remove the surface contamination of duct waste.

  • PDF

Analysis of Fuel Options in TRIGA Reactor

  • Lee, Un-Chul;Lee, Chang-Kun;Lee, Ji-Bok;Kim, Jin-Soo;Lee, Sang-Kun;Jun, Byung-Jin;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-45
    • /
    • 1979
  • In this paper. nuclear characteristics of TRIGA Mark-III has been analyzed in detail for six different fuel options. Presently, 70 w/o enriched FLIP fuels are adopted for TRIGA core to improve fuel lifetime. However, such highly enriched fuels are not easily obtained due to nonproliferation treaty. This research examines the possible substitution for FLIP fuels with high density fuels without reducing the nuclear performance. This work will provide long-time plan for TRIGA operation.

  • PDF

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

Computational design and characterization of a subcritical reactor assembly with TRIGA fuel

  • Asuncion-Astronomo, Alvie;Stancar, Ziga;Goricanec, Tanja;Snoj, Luka
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.337-344
    • /
    • 2019
  • The TRIGA fuel of the Philippine Research Reactor-1 (PRR-1) will be used in a subcritical reactor assembly (SRA) to strengthen and advance nuclear science and engineering expertise in the Philippines. SRA offers a versatile and safe training and research facility since it can produce neutrons through nuclear fission reaction without achieving criticality. In this work, we used a geometrically detailed model of the PRR-1 TRIGA fuel to design a subcritical reactor assembly and calculate physical parameters of different fuel configurations. Based on extensive neutron transport simulations an SRA configuration is proposed, comprising 44 TRIGA fuel rods arranged in a $7{\times}7$ square lattice. This configuration is found to have a maximum $k_{eff}$ value of $0.95001{\pm}0.00009$ at 4 cm pitch. The SRA is characterized by calculating the 3-dimensional neutron flux distribution and neutron spectrum. The effective delayed neutron fraction and mean neutron generation time of the system are calculated to be $748pcm{\pm}7pcm$ and $41{\mu}s$, respectively. Results obtained from this work will be the basis of the core design for the subcritical reactor facility that will be established in the Philippines.

Dynamic analysis of TRIGA Mark-II reactor (TRIGA Mark-II 원자로의 동특성 해석)

  • 이양수
    • 전기의세계
    • /
    • v.14 no.6
    • /
    • pp.8-13
    • /
    • 1965
  • The TRIGA Mark-II Reactor is very simple to analyze the dynamic characteristics, so that the heat transfer function of the reactor fuel rod is able to be considered as a over-all feedback transfer function. The heat transfer dynamics of the fuel rod is derived under some assumptions. And the over-all reactor transfer function is analytically calcu- lated and it is compared with the measured value. The reactor dynamics and the stability are analyzed by means of the Root-Locus and the Nyquist.

  • PDF

Multigroup Calculations for TRIGA-type Reactor Analysis

  • Lee, Jong-Tai;Kim, Jung-Do;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.87-92
    • /
    • 1978
  • Multigroup constant calculation system for TRIGA-type reactor analysis was provided. Calculations for initial criticality, temperature coefficient, flux and power distributions of TRICA-Mark III reactor were carried out by using diffusion code CITATION. And some of results were compared with the values of start-up experiments and design values. It could be confirmed that the prepared computation system is very useful for TRIGA-type reactor analysis.

  • PDF