• Title/Summary/Keyword: TRANSDUCER

Search Result 2,040, Processing Time 0.029 seconds

Frequency Characteristics Variation of a Class I Flextensional Transducer (Class I Flextensional 변환기의 주파수 특성 변화)

  • Kang, Kook-Jin;Paik, Jong-Hoo;Lee, Young-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.142-150
    • /
    • 2009
  • We constructed a Class I flextensional transducer, and analyzed the variation of the resonance frequency of the transducer in relation to its structural and material variables. We used the FEM for the analysis. Total length of the transducer, thickness and material properties of the shell have large effects on the resonance frequency. While outer radius of the ceramic stack and material properties of the ceramic stack have no effect on the resonance frequency. In addition, the validation of the FE model was verified by manufacturing and comparison of the impedance analysis. Results of the present work can be utilized to design a Class I flextensional transducers of various resonance frequency.

Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter

  • Lee, In-Ho;Son, Dae-Soo;Choi, Ik-Hwang;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.576-581
    • /
    • 2007
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Especially, when we use contact PZT transducer, if the contacting pressure is not kept in constant during the measurement then there exists extraneous fluctuation in the measured nonlinearity caused by the unstable contact condition, In this paper, we developed a pneumatic control system to keep the contacting pressure of transducer in constant during the measurement and analyzed the effect of contacting pressure to the ultrasonic nonlinearity measurement As a result, we found that the pressure of transducer in our measurement system should be greater than 170 kPa to measure the ultrasonic nonlinear parameter in stable with no dependency on the contacting pressure.

Nondestructive Evaluation of plate structures using the Ultrasonic Transducer OPMT (OPMT 초음파 트랜스듀서를 이용한 평판구조 이상진단)

  • Kim, Yoon-Young;Cho, Seung-Hyun;Lee, Ju-Seung;Sun, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.423-427
    • /
    • 2004
  • In this work, we propose a new ultrasonic damage inspection method in plate structures. The proposed method employs an OPMT (Orientation-adjustable Patch-type Magnetostrictive Transducer) in order to make the ultrasonic waves focused on the specific target point. For experiments, virtual grid points were set up at every 50 mm in an aluminum plate and two OPMTs were used for inspection. If there exists a crack in a plate, the reflected Lamb wave from the crack is measured in addition to the direct waves from the transmitting transducer to the receiving transducer.

  • PDF

Development of an Impedance Matching Layer in an Ultrasound Transducer with Gradient Properties

  • Jeong, Jihoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.374-379
    • /
    • 2018
  • The piezocomposite transducer is widely used because it is highly efficient in transforming electric energy into mechanical energy, and its frequency range is broader than that of other types of ultrasound transducers. A general piezocomposite transducer is composed of an acoustic lens, impedance matching layers, piezoelectric materials, and backing layers. When an input voltage is applied to a piezoelectric material as an active material, it generates sound waves while vibrating. At that time, an impedance matching layer helps the sound waves to propagate forward while reducing the impedance mismatch that may occur at the interface between the active material and its front material. The impedance mismatch has a negative effect on the signal of an ultrasound transducer; thus, it is important to design a matching layer to overcome the issue. In this study, an optimized feature of a matching layer with gradient properties is studied. An objective function is defined to minimize both the average and the deviation of the reflection coefficients that are functions of the frequencies. As a result, an improvement in the signal characteristics with respect to the sensitivity and bandwidth is reported.

A Study on Efficient Frequency Control of Transducer for Skin Treatment Using Multi-Frequency Ultrasound (멀티주파수 초음파를 사용하는 피부 치료기기 트랜스듀서의 효율적인 주파수 제어 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1038-1048
    • /
    • 2022
  • Ultrasound is one of the effective methods for skin treatment. The skin penetration depth of the ultrasound depends on the ultrasonic frequency, that is, when the ultrasonic frequency is high, the depth is shallow. We have developed a transducer which can generate effectively 3 different ultrasonic frequencies removing interference between 3 types of frequencies according to impedance matching technology. The generated powers of transducer are 40.67W at 3.MHz, 17.46W at 11.7 MHz, and 14.79W at 21.5 MHz. The signal interference between the three frequencies is designed so that they do not interfere with each other by separating the signals using the SPDT (Single Pole, Double Throw) switch. The developed hybrid ultrasound transducer can be applied in skin care or skin treatment and beauty therapy.

A new ultrasonic power generator using instantaneous current resultant control-based inverter and its control system

  • Kim, Dong-Hee;Kim, Young-Seok;Yoo, Dong-Wook;Kim, Yo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.631-636
    • /
    • 1987
  • The design of ultrasonic transducer energy processing systems requires highly reliable command featuring mechanical frequency tracking and constant velocity control of the ultrasonic transducer with an acoustic load. This paper presents a new conceptional instantaneous current resultant control base high-frequency inverter using self turn-off devices driving an electrostrictive ultrasonic transducer system and its optimum control technique, which is implemented by feed-back of the ultrasonic transducer applied voltage and instantaneous velocity of the transducer vibrating system through a Phase-Locked-Loop control scheme. The feedback voltage corresponding to instantaneous velocity is averaged over a half-period with respect to constant amplitude/constant velocity control strategy. Described are the theory of this signal detection technique and the experimental set-up.

  • PDF

A Improved Programmable-Dynamometer Control For Motor Drive Systems Testing (모터 구동시스템 시험을 위한 개선된 프로그램어블 다이나모메터 제어)

  • 김길동;박현준;조정민;전기영;오봉환;이훈구;한경희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.211-220
    • /
    • 2003
  • The control method of programmable dynamometer for overall test of machine is to load the reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of meter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for meter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is Proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction meter. Therefore, the torque controller is not affected by a load torque disturbance. To verify a superiority of the proposed control algorithm, the analysis for a root locus of a conventional control method and the proposed one, and simulation and experiment is performed. Therefore we hope to be extended in industrial application.

Development of High Frequency pMUT Based on Sputtered PZT

  • Lim, Un-Hyun;Yoo, Jin-Hee;Kondalkar, Vijay;Lee, Keekeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2434-2440
    • /
    • 2018
  • A new type of piezoelectric micromachined ultrasonic transducer (pMUT) with high resonant frequency was developed by using a thin lead zirconate titanate (PZT) as an insulation layer on a floating $10{\mu}m$ silicon membrane. The PZT insulation layer facilitated acoustic impedance matching at active pMUT, leading to a high performance in the acoustic conversion property compared with the transducer using $SiO_2$ insulation layer. The fabricated ultrasonic devices were wirelessly measured by connecting two identical acoustic transducers to two separate ports in a single network analyzer simultaneously. The acoustic wave emitted from a transducer induced a $3.16{\mu}W$ on the other side of the transducer at a distance of 2 cm. The transducer performances in terms of device diameters, PZT thickness, annealings, and different DC polings, etc. were investigated. COMSOL simulation was also performed to predict the device performances prior to fabrication. Based on the COMSOL simulation, the device was fabricated and the results were compared.

Development of the Hydraulic Pressure Transducer System for Testing the Impact Energy of Hydraulic Breaker (유압 브레이커의 타격 에너지 측정을 위한 유압 변환장치 개발)

  • 이근호;이용범;정동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • Hydraulic breaker of excavator has been used for the destruction and disassembling of buildings, crashing road pavement, breaking rocks at quaky and etc. The performance of breakers is evaluated their own destructive force and the number of impact by input hydraulic flow rate and pressure on the operating conditions. Because hydraulic breakers generate high impact energy, the accurate measurement of the impact force has been facing a technical challenge. In this study, the hydraulic pressure transducer system was developed based on the characteristics of pressure variation in closed vessel fur testing the impact energy. The hydraulic pressure transducer system is consisted with a hydraulic cylinder, main base, pressure & temperature sensors, LVDT, data acquisition system and etc. The developed hydraulic pressure transducer system was applied to measure the impact energy for hydraulic breaker. The measured impact force was 438.8 kgf.m within the designed impact force bounds. The developed hydraulic pressure transducer system as a simple tester could be applied to measure the impact force and the number of impact.

Design of Distributed Modal Transducer by Optimizing Gain-weights of Interface Circuit (인터페이스 회로의 이득 최적화를 통한 분포형 모달 변환기의 설계)

  • 김지철;황준석;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.444-449
    • /
    • 1998
  • A modal transducer in two-dimensional structure can be implemented by varying the distributed transducer's gain spatially. In this paper, a method based on finite element method is developed for optimizing spatial gain distribution of PVDF transducer to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this continuous gain distribution without repoling die PVDF film, the gain distribution is approximated by optimizing gain-weights of interface circuit. The whole spatial area of the PVDF film is divided into several electrode segments and the signals from each segment are properly weighted and summed by interface circuit. This corresponds to the approximation of a continuous function using discrete values. The electrode partition is optimized using the genetic algorithm. Gain-weights are optimized using the simplex search method. A modal sensor for first to fourth modes of aluminum plate is designed using PVDF film with gain-weighted interface circuit. Various lamination angles of PVDF film are taken into consideration to utilize the anisotropy of the PVDF film. Performance of the optimized' PVDF sensor is demonstrated by numerical simulations..

  • PDF