• Title/Summary/Keyword: TR-state

Search Result 72, Processing Time 0.019 seconds

Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

  • Wang, Laiyou;Guo, Shuxian;Zeng, Bo;Wang, Shanshan;Chen, Yan;Cheng, Shuang;Liu, Bingbing;Wang, Chunyan;Wang, Yu;Meng, Qingshan
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.66-78
    • /
    • 2022
  • The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.

Evaluation of the Neural Fiber Tractography Associated with Aging in the Normal Corpus Callosum Using the Diffusion Tensor Imaging (DTI) (확산텐서영상(Diffusion Tensor Imaging)을 이용한 정상 뇌량에서의 연령대별 신경섬유로의 변화)

  • Im, In-Chul;Goo, Eun-Hoe;Lee, Jae-Seung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.189-194
    • /
    • 2011
  • This study used magnetic resonance diffusion tensor imaging (DTI) to quantitatively analyze the neural fiber tractography according to the age of normal corpus callosum and to evaluate of usefulness. The research was intended for the applicants of 60 persons that was in a good state of health with not brain or other disease. The test parameters were TR: 6650 ms, TE: 66 ms, FA: $90^{\circ}$, NEX: 2, thickness: 2 mm, no gap, FOV: 220 mm, b-value: $800s/mm^2$, sense factor: 2, acquisition matrix size: $2{\times}2{\times}2mm^3$, and the test time was 3 minutes 46 seconds. The evaluation method was constructed the color-cored FA map include to the skull vertex from the skull base in scan range. We set up the five ROI of corpus callosum of genu, anterior-mid body, posterior-mid body, isthmus, and splenium, tracking, respectively, and to quantitatively measured the length of neural fiber. As a result, the length of neural fiber, for the corpus callosum of genu was 20's: $61.8{\pm}6.8$, 30's: $63.9{\pm}3.8$, 40's: $65.5{\pm}6.4$, 50's: $57.8{\pm}6.0$, 60's: $58.9{\pm}4.5$, more than 70's: $54.1{\pm}8.1mm$, for the anterior-mid body was 20's: $54.8{\pm}8.8$, 30's: $58.5{\pm}7.9$, 40's: $54.8{\pm}7.8$, 50's: $56.1{\pm}10.2$, 60's: $48.5{\pm}6.2$, more than 70's: $48.6{\pm}8.3mm$, for the posterior-mid body was 20's: $72.7{\pm}9.1$, 30's: $61.6{\pm}9.1$, 40's: $60.9{\pm}10.5$, 50's: $61.4{\pm}11.7$, 60's: $54.9{\pm}10.0$, more than 70's: $53.1{\pm}10.5mm$, for the isthmus was 20's: $71.5{\pm}17.4$, 30's: $74.1{\pm}14.9$, 40's: $73.6{\pm}14.2$, 50's: $66.3{\pm}12.9$, 60's: $56.5{\pm}11.2$, more than 70's: $56.8{\pm}11.3mm$, and for the splenium was 20's: $82.6{\pm}6.8$, 30's: $86.9{\pm}6.4$, 40's: $83.1{\pm}7.1$, 50's: $81.5{\pm}7.4$, 60's: $78.6{\pm}6.0$, more than 70's: $80.55{\pm}8.6mm$. The length of neural fiber for normal corpus callosum were statistically significant in the genu(P=0.001), posterior-mid body(P=0.009), and istumus(P=0.012) of corpus callosum. In order of age, the length of neural fiber increased from 30s to 40s, as one grows older tended to decrease. For this reason, the nerve cells of brain could be confirmed through the neural fiber tractography to progress actively in middle age.