The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.
TPI (Topographic Position Index)와 경사도를 조합하여 새로운 산사태 인자인 TSI (TPI-Slope Index)를 제안하고 산사태 예측모형에 적용하였다. 이를 위해, 먼저 다양한 분석 반경의 TPI를 서로 비교하여 TPI350이 연구 대상 지역에 가장 적합함을 알아내었고, 이를 경사도와 조합하여 TSI를 제작하였다. 본 논문에서 제안한 TSI의 적용성을 평가하기 위해 로지스틱 회귀분석을 이용한 결과, 산사태 예측 모형에 활용할 수 있다는 결론을 얻었다. 그 후, 기타 지형 정보들과 토양 및 임상 정보를 추가하여 산사태 위험도를 평가하는 로지스틱 회귀 모형을 제작하였다. 이를 위해 DEM (Digital Elevation Model), 토양도, 임상도로부터 추출할 수 있는 산사태 관련 인자들을 수집하고 이들을 검토하여 다른 인자와 상관도가 높거나 산사태와의 연관성이 낮은 인자들은 우선 제외하였다. 그 결과, TSI, 고도, 사면 길이, 경사향, 유효 토심, 영급, 나무 밀도, 임상 등 8개의 인자가 선정되어 회귀분석에 독립변수로 입력되었다. 변수의 입력 방법(전진 선택법, 후진 제거법, 직접 선택법)에 따라 3가지 모형을 생성하였고, 이들에 대한 평가를 수행하였다. 세 모형에서 선택된 변수는 조금씩 다르지만, 공통적으로 유효 토심, 나무 밀도, TSI 인자의 중요도가 높은 것으로 나타났다.
본 연구는 울주군과 경상남도 일대를 대상으로 산지습지 가능지역의 분포를 예측하기 위한 Topographic Position Index(TPI) 방법론을 제시하고, 예측된 분포가능지와 기존 습지의 적합성을 평가하는 것을 목적으로 하였다. 산지습지 분포예측은 DEM에서 추출된 TPI 그리드, 그리고 그 값을 통해 분류된 대상지의 사면 위치와 지형유형에 의해서 수행되어졌다. TPI 방법에 의해 산지습지 분포가능지를 예측한 결과에 따르면, 평탄지 경사기준이 $5^{\circ}$ 이하인 경우의 분포가능지는 전체면적의 0.1%($1.38km^2$), 그리고 경사도 $20^{\circ}$ 이하인 경우는 3.5%($37.1km^2$)를 차지하는 것으로 나타났다. 예측된 산지습지 분포가능지와 대상지 내의 기존 산지습지를 비교하여 적합성을 분석한 결과, 평탄지 경사기준이 $10^{\circ}$ 이하인 경우의 적합성이 0.066으로 가장 높았고, 평탄지 경사기준 $20^{\circ}$ 이하에서 예측된 지역의 적합성이 0.019로 가장 낮은 것으로 나타났다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.281-284
/
2008
Due to the remarkable development of the GIS and spatial information technology, the information on the national land and scientific management are disseminated. According to the result of research for an efficient analysis of forest site, it presents distinguishing of satellite image and methodology of TPI (Topographic Position Index). The prediction of forest site distribution through this research, specified Gyeongju-si area, gives an effect to distinguishing honor system through Quickbird image with the resolution 0.6m. Furthermore it was carried out through TPI grid that is abstracted by DEM, slope of study area and type of topography, as well as it put its operation on analysis and verification of relativity between the result of prediction on forest site distribution and the field survey report. It distinguishes distribution of country rock that importantly effects to producing of soil, using 1: 5000 forest maps and grasping distribution type of soil using satellite image and TPI, it is supposed to provide a foundation of the result on prediction of forest site. With the GIS techniques of analysis, inclination of discussion, altitude, etc, and using high resolution satellite image and TPI, it is considered to be capable to provide more exact basis information of forest resources, management of forest management both in rational and efficient.
본 논문은 비접근지역인 DMZ에서 동해안의 원산만에 이르는 추가령 열곡에 대해 GIS를 이용하여 지형면을 분류하고 그 분포의 특징과 형성과정에 미친 영향을 분석한 것이다. 분석 방법으로 수치고도모델(DEM)과 Landsat 위성영상을 이용하였다. 지형면 분류는 고도, 경사도, 기복량 등을 이용하여 지형 표면의 요철 정도를 지수로 산출하는 TPI(Topographical Position Index)를 이용하였다. 연구지역의 지형면은 깊은 계곡, 얕은 계곡, 산지유로, 평탄곡지, 평탄지(단구, 평야, 대지), 산록사면, 산복사면, 소구릉, 완사능선, 산정능선 등 10가지 유형으로 분류하였다. 이들 지형면의 지형형성과정의 평균적인 특성을 파악하기 위하여 기반암과 기복량, 지형면과 기복량, 지형면과 식생활력도 등의 관계에 대한 구역 평균(Zonal Statistics)을 실시하였다. 이러한 분석을 통하여 비접근 지역인 추가령열곡 DMZ의 용암대지 개석과정과 분수계 발달과정 등을 파악할 수 있었다.
이 연구는 우리나라의 산악형 산림지대의 지형을 분류하기 위한 방안으로 TPI를 응용하기 위해 수행되었다. 이 방법을 적용하기 위해서는 지형특성에 적합한 기초분석단위로 scale factor들이 요구된다. 따라서 본 연구에서는 scale factor를 결정하기 위한 객관적으로 결정하기 위한 방안을 제시하였다. 즉, 산지의 기복 패턴를 반영하기 위한 scale factor를 결정하기 위해 음영기복도를 이용하여 제작된 지형성장곡선으로부터 기울기변화도 곡선을 작성하였다. 기울기변화도 곡선을 이용하여 기복의 변화량이 최대가 되는 지점을 찾고, 그 극대점에서의 grid 크기를 찾아 지형 분류를 위한 scale factor로 결정하였다. scale factor 결정 알고리즘의 적용성을 검토하기 위하여 지형특성이 다른 3곳의 산악지대에 대한 scale factor를 도출하고, 지형분류를 수행하였다. 이 방법에 따른 연구결과 scale factor는 지형기복이 심할수록 짧아지는 경향이 있음을 보여주었다. 또한 TPI를 이용하여 분류한 능선과 계곡의 수가 종단면도를 이용한 방법과 유사하게 나타났고, scale factor의 크기가 대상지역의 능선 간 평균거리와 일치하는 경향이 있음을 보여주었다.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
제2권1호
/
pp.1-14
/
2021
The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.
A number of investigations and studies have been conducted in various fields regarding the sediment disasters of Mt. Woomyeon that occurred in July 2011. We collected and compared the topographic information of the general points where debris flows did not occur and the collapse points where the debris flow occurred in order to find out the characteristics of the collapse points in Woomyeon mountain. The collected topographic information is altitude, curvature, slope, aspect and TPI(topographic position index). As a result of comparison, there were relatively many collapse points at an altitude of 210m to 250m, and at a slope of 30° to 40°. In addition, the risk of collapse was low in a cell where the curvature was close to 0, and the risk was higher in concave terrain than in convex terrain. In the case of TPI, there was no statistical difference between the general points and the collapse points when the analysis radius was larger than 200m, and there was a correlation with the curvature when the analysis radius was smaller than 50m. In the case of debris flows that are affected by artificial structures or facilities, there is a possibility of disturbing the topographic analysis results. Therefore, if a research on debris flow is conducted on a mountain area that is heavily exposed to human activities, such as Woomyeon mountain, diversified factors must be considered to account for this impact.
최근 기후 변화로 인해 전 세계적으로 이상기후 현상이 일어나고 있으며 우리나라도 예외는 아니다. 과거의 강우기록을 갱신하는 강우가 지속적으로 발생하고 있으며 특히 국지성 집중호우의 경우 짧은 시간에 많은 양의 강우가 좁은 지역에 발생하고 있어 산지재해 발생 또한 증가 하고 있다. 강원도의 경우 지역적 특성상 대부분 산지로 이루어져 있어 경사가 가파르고 토심 또한 얕아 산사태에 의해 많은 피해를 입고 있다. 그러므로 본 연구에서는 산지유역에 지형분류기법과 산사태 위험성 예측기법을 적용하여 재해 위험도를 예측하고자 하였다. 지형분류기법은 지형위치지수를(TPI)를 계산하여 위험 지형을 분류하고 토석류 예측기법중 하나인 SINMAP 방법을 사용하여 산지재해 발생 가능지역을 예측하였다. 그 결과 지형분류기법에서는 전체 유역 중 약 63% 이상 완경사지와 급경사지로 분류되었으며 SINMAP 분석에서는 전체 유역 중 약 58%가 위험 지역으로 분석되었다. 최근 각종 개발로 인해 산지재해의 저감 대책이 마련이 시급한 실정이며 재해 위험 구간에 대한 안정성 대책을 수립하여야 한다.
본 연구는 최근 폭염 문제로 주목을 받고 있는 밀양시를 대상으로 토지피복과 지형과 같은 공간 특성이 폭염일수에 미치는 영향을 분석하는 것이다. 폭염일수는 RCP 기반의 남한상세 기후자료(2000~2010년)를 활용하여 산출하였고, 토지피복유형은 2000년 토지피복도와 2005년, 2010년 환경부 중분류 토지피복도를 이용하여 시가화지역, 농업지역, 산림지역, 수역, 초지 및 나지로 유형을 재분류하였다. 지형특성은 공간해상도 30m급의 수치표고모델을 이용하여 계산된 지형위치지수로 분석하였다. 분석결과, 폭염일수는 2000년 평균 31.4일로 가장 많이 발생하였고, 2008년 26.9일, 2001년 24.2일, 2010년 24.0일 순으로 나타났다. 폭염일수는 농경지와 계곡부 일대, 도시 외곽지역에서 많아지는 것으로 분석되었다. 밀양시의 지형적 특성은 평지(19.7%) 보다는 경사지(51.6%)의 산악지역이 많은 것으로 나타났으며, 서쪽 일부지역은 대규모 계곡지역(12.2%)이 분포하는 것으로 확인되었다. 공간특성과 폭염의 상관성 분석 결과, 산림지역에서 폭염일수와 음의 상관성(-0.109)으로 나타나 폭염을 완화하는 요인으로 도출되었다. 지형적인 측면에서는 평지와 폭염이 양의 상관성(0.305)으로 나타났다. 이러한 결과들은 도시계획가와 환경관리자에게 토지개발과 지형변화가 폭염에 미치는 영향을 이해하는데 중요한 시사점을 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.