• Title/Summary/Keyword: TP Removal

Search Result 234, Processing Time 0.029 seconds

Phosphorous Removal in a Free Water Surface Wetland Constructed on the Gwangju Stream Floodplain (광주천 고수부지에 조성한 자유수면인공습지의 인 제거)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • Removal rates of $PO_4-P$ and TP in a free water surface wetland system were investigated. The system was established in 2008 on a floodplain in the middle reach of the Gwangju Stream flowing through Gwangju City. Its dimensions were 46 meters in length and 5 meters in width. Two year old Typha angustifloria L. growing in pots were planted on half of the area and Zizania latifolia Turcz on the other half in 2008. Stream water was funneled into the wetlands by gravity flow, and its effluent was discharged back into the stream. The influent volume was controlled by valves and water depth was adjusted by wires. Volume and water quality of inflow and outflow were analyzed from January to December in 2010. Inflow into the system averaged approximately $710m^3/day$ and hydraulic residence time was about 1.5 hours. Average influent and effluent $PO_4-P$ concentration were 0.144 and 0.103mg/L, respectively, and $PO_4-P$ abatement amounted to 28.6%. Influent and effluent TP concentration averaged 0.333 and 0.262mg/L, respectively, and TP retention reached to 20.7%.$PO_4-P$ removal rate(%) during plant growing season(31.448) was significantly high(p<0.001) when compared with that during plant non-growing season(25.829). TP abatement rate(%) during plant growing season(27.230) was also significantly high(p<0.001) when compared with that of the non-growing season(14.856). Major phosphorous removals in the system resulted from adsorption of phosphorous in the litter-soil layers; sedimentation of particulate phosphorous and Ca, Al, Fe bounded phosphates; and absorption of phosphorous by emergent plants. The adsorption and sedimentation occurred throughout the year, however, the absorption took place during plant growing season. This resulted in higher removals of $PO_4-P$ and TP during plant growing season.

Optimization of coagulant dosage using response surface methodology with central composite design (반응표면분석법-중심합성계획을 이용한 최적 응집제 주입량 산정 연구)

  • Kim, Yeseul;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.193-202
    • /
    • 2015
  • The determining the appropriate dosage of coagulant is very important, because dosage of coagulant in the coagulation process for wastewater affects removing the amount of pollutants, cost, and producing sludge amount. Accordingly, in this study, in order to determine the optimal PAC dosage in the coagulation process, CCD (Central composite design) was used to proceed experimental design, and the quadratic regression models were constructed between independent variables (pH, influent turbidity, PAC dosage) and each response variable (Total coliform, E.coli, PSD (Particle size distribution) (< $10{\mu}m$), TP, $PO_4$-P, and $COD_{cr}$) by the RSM (Response surface methodology). Also, Considering the various response variables, the optimum PAC dosage and range were derived. As a result, in order to maximize the removal rate of total coliform and E.coli, the values of independent variables are the pH 6-7, the influent turbidity 100-200 NTU, and the PAC dosage 0.07-0.09 ml/L. For maximizing the removal rate of TP, $PO_4$-P, $COD_{cr}$, and PSD(< $10{\mu}m$), it is required for the pH 9, the influent turbidity 200-250 NTU, and the PAC dosage 0.05-0.065 ml/L. In the case of multiple independent variables, when the desirable removal rate for total coliform, E.coli, TP, and $PO_4$-P is 90-100 % and that for $COD_{cr}$ and PSD(< $10{\mu}m$) is 50-100 %, the required PAC dosage is 0.05-0.07 ml/L in the pH 9 and influent turbidity 200-250 NTU. Thus, if the influent turbidity is high, adjusting pH is more effective way in terms of cost since a small amount of PAC dosage is required.

Treatment of Seafood Wastewater Using AO$_2$ System with PU-AC Media (담체가 첨가된 AO$_2$공법을 이용한 수산물 가공폐수의 처리)

  • Lee, Soon;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.666-672
    • /
    • 2008
  • Feasibility of simultaneous removal of organic matter, nitrogen and phosphorus was evaluated by applying AO$_2$ system to treat wastewater from a seafood processing plant. Treatability test was conducted by incorporating activated sludge from municipal sewage treatment plant with PU-AC media. Inflow concentrations of COD, TN, and TP were 198$\sim$1,240 mg/L, 75$\sim$577.4 mg/L, and 2.2$\sim$53.5 mg/L, respectively. Average removal efficiencies and outflow concentration of COD, TN, and TP were 86.5%, 65.7 mg/L; 81.4%, 53.1 mg/L; and 80.6% 4.07 mg/L, respectively. Stable operation was possible by increasing organic matter, nitrogen, and phosphorus loading rate to seafood wastewater treatment system composed of anaerobic and aerobic reactors. Used PU-AC media was proved to be biodegradable in this AO$_2$ system by maintaining high biomass concentration in the PU-AC media.

Practical Research on the Advanced Detention Pond for the Improvement of Water Quality of Agricultural Reservoir (농업용저수지의 수질개선을 위한 오염물질 침강지 조성 기법)

  • Pae, Yo Sop;Nam, Gui Sook
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2008
  • To improve water quality for agricultural use, it is needed to introduce the natural and low-cost self-purification system. It is also necessary to develop the water purification facilities for more efficient and convenient design, construction, operation and management. This study aims to develop the practical facilities to improve water quality for agricultural use. The practical detention pond system, which uses artificial floating island and shield skirts with bio-media, enhanced removal efficiencies of SS, TN and TP more particularly than the detention pond using an auxiliary dam. The removal efficiencies SS, TN and TP for the practical detention pond were 55.7%, 61.0% and 55.9%, respectively. The facilities of the practical detention pond has a lot of disadvantages such as the low-cost and high efficiency as well as uncountable impacts regarding ecology and landscape. However, an auxiliary dam is recommended to be installed in shallow depth due to low efficiency.

  • PDF

A Case Study Stormwater Treatment by Channel-Type Wetland Constructed on the Flood Plane of the Stream (하천 고수부지에 설치한 수로형 인공습지에 의한 강우 유출수 처리에 관한 연구)

  • Kim, Piljoo;Han, Euilyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • Researches about NPS(Non-point Pollution Source) reduction have been widely carried out in recent years. A pilot channel-type constructed wetland (wet swale) was constructed in Rongyin area to treat stormwater generated from a green house agro-land of 22.7 ha. From 2006 to 2008, monitoring was conducted to evaluate its performance on the removal effect for organic pollutants as well as nutrients. Totally, sampling trips of 17 rainfall events were made and they covered most types of storm events in Korea. The channel-type constructed wetland have average removal efficiencies of 78.3~92.0%, 56.4~66.1%, 28.2~45.5% and 50.6~66.4% for SS, COD, TN and TP, respectively. According to four methods for estimating the removal efficiency, the average efficiencies of TSS, COD, TN and TP are 86.0%, 60.1%, 30.1% and 53.5%, respectively. From 2006 to 2008, annual efficiency improved due to infiltration potential increase. It was found that most of the pollutants removed in this channel type of wetland was particulate solids bound pollutants, which is assumed fact that it lacks of physico-chemical treatment conditions which are commonly observed in the retention type of constructed wetlands.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Distribution of Pollutant Content within Surface Sediment and Evaluation of Its Removal Efficiency in the Sihwa Constructed Wetland (시화호 인공습지에서 표층퇴적토의 오염물질 함량 분포와 제거효율 평가)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Kim, Dong-Sup;Kim, Sea-Won;Hwang, In-Seo;Lee, Mi-Kyung;Kang, Ho;Kim, Eun-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.755-764
    • /
    • 2009
  • To estimate the pollutant removal efficiency by surface sediment, matter content within surface sediment and its release from the sediment were investigated at 12 sites in the Sihwa constructed wetland. The content of COD, TOC, IL, TN, and TP within sediment varied temporally and spacially, showing ranges of 4.1~7.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g, respectively. The contents of organic matter and TN were significantly highest in March and decreased towards fall (March${\geq}$May${\geq}$July${\geq}$September, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN), whereas TP content was not significant statistically in difference between sampling times. The contents of heavy metals also varied largely with sampling sites and times (As:3.5~3.9 ${\mu}g$/g, Cd:0.08~0.38 ${\mu}g$/g, Cr:51.8~107.0 ${\mu}g$/g, Cu:16.4~81.8 ${\mu}g$/g, Pb:26.~81.8 ${\mu}g$/g, Zn:85~559 ${\mu}g$/g). As compared with sediment quality guideline, the content of organic matter within surface sediment of the Sihwa constructed wetland was classified as unpolluted level. In contrast, the contents of TN, TP and heavy metals were classified as medium or severe pollution state, except some heavy metals (Cu and Pb). From the results of release experiment, TN, Pb, and Zn tend to be removed by surface sediment, but TP, Cd, and Cu have a tendency to released from sediment. Therefore, a relevant plan to improve the removal efficiency of pollutant (especially phosphorus) by surface sediment in the Sihwa constructed wetland is needed.

A Study of the comparison of the treatment characteristics between ASA system and CAS system (고도단계유입폭기법과 표준활성슬러지법의 처리특성 비교)

  • Knag, Yong-Tae;Cho, Yong-Hyun;Han, Sang-Yun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.112-115
    • /
    • 2007
  • Currently an increase in domestic sewage and industrial wastewater causes serious water pollution in Korea. To solve water pollution problems, conventional activated sludge (CAS) system is generally used in wastewater treatment plant but this process is so ineffective in nitrogen and phosphorus. Even if CAS system is the major process, it must be improved instantly so as to remove nitrogen and phosphorus. Otherwise, the serious water pollution problems can't be resolved with CAS system. Therefore this study focused on the comparison of the treatment characteristics between ASA system and CAS system. And also the mass balance of each process of ASA system. The results from operating advanced step aeration (ASA) system indicated that the removal efficiency of BOD, COD, and SS was 89.9%, 74.5%, and 89.0% respectively. In comparison, the removal efficiency of BOD, COD, and SS for CAS system was 89.5%, 71.8%, and 89.5% respectively. In addition to the results, the TN removal efficiency of ASA system was 76.5% comparing to 32.7% of CAS system. It was concluded that the TN removal efficiency of ASA system was 44% higher than CAS system. And the TP removal efficiency was 81.4% in ASA system comparing to 25.2% in CAS system. It also means that over 56% of TP was removed in ASA system comparing to CAS system.

  • PDF

A Study on Autocontrolled SBR for Biological Nutrient Removal with External Carbon Sources (외부탄소원 주입시 영양염류의 생물학적 제거를 위한 자동제어 SBR 공정에 관한 연구)

  • Lee, Byung-hun;Kang, Seong-jae;Lim, Sung-il;Yoo, Pyung-jong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.371-377
    • /
    • 2002
  • The purpose of this study is to develop effective operating process in order to achieve more suitable conditions of Anoxic-Oxic-Anoxic-Stripper(AOAS) SBR through real-time control. To improve the removal efficiency, glucose, methanol and synthetic food waste acid fermentant were added as an external carbon source, In the case of glucose and synthetic food waste acid fermentant, TN, TP were removed to average 86.9%, 73.0% respectively. Methanol was removed to average 64.6%, 55.4% respectively. The synthetic food waste acid fermentant proved to be the most efficient and allowed for the substitution of an external carbon source. The removal rate of $COD_{Cr}$, was approximately 90% at all cases. The results of the study that a correlation between ORP (Oxidation-Reduction Potential), pH and DO and nitrification or denitrification when an external carbon source is added and when it isn't was showed that ${\Delta}ORP$ is suitable parameter. ORP reacted properly to denitrification (${\Delta}ORP<-10$) and nitrification (${\Delta}ORP<0$). The use of real-time control saved anywhere between 61 and 67 minutes at the anoxic(1) stage and 26 to 52 minutes at the oxic(1) stage. When the time saved from the anoxic(1) and oxic(1) was added to the anoxic(2) stage for the removal efficiency of TN and TP increased from 0.7 to 13.9% and 12 to 35 % respectively.

Comparison of membrane distillation with reverse osmosis process for the treatment of anaerobic digestate of livestock wastewater (가축분뇨 혐기 소화액 처리를 위한 막 증발과 역삼투 공정 성능 비교)

  • Kim, Seunghwan;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, a pilot-scale (3 ㎥/day) membrane distillation (MD) process was operated to treat digestate produced from anaerobic digestion of livestock wastewater. In order to evaluate the performance and energy cost of MD process, it was compared with the pilot scale (10 ㎥/day) reverse osmosis (RO) process, expected competitive process, under same feed condition. As results, MD process shows stable permeate flux (average 10.1 L/㎡/hr) until 150 hours, whereas permeate flux of RO process was decreased from 5.3 to 1.5 L/㎡/hr within 24 hours. In the case of removal of COD, TN, and TP, MD process shows a high removal rate (98.7, 93.7, and 99% respectively) stably until 150 hours. However, in the case of RO process, removal rate was decreased from 91.6 to 69.5% in COD and from 93.7 to 76.0% in TP during 100 hours of operation. Removal rate of TN in RO process was fluctuated in the range of 34.5-62.9% (average 44.6%) during the operation. As a result of energy cost analysis, MD process using waste heat for heating the feed shows 18% lower cost compare with RO process. Thus, overall efficiency of the MD process is higher then that of the RO process in terms of permeate flux, removal rate of salts, and operating cost (in the case of using waste heat) in treating the anaerobic digestate of livestock wastewater.