• Title/Summary/Keyword: TP 제거

Search Result 157, Processing Time 0.034 seconds

Assessment of Salt Resistance and Performances of LID Applicable Plants (LID시설에 적용된 식물의 염분 저항성 및 효과 평가)

  • Choi, Hyeseon;Hong, Jungsun;Lee, Soyung;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2016
  • In LID facilities treating stormwater runoff, various kinds of plants are applied for water circulation recovery and pollutant reduction. However, rapid changes of soil moisture due to the use of porous media and spread of deicing material during winter season cause slow plant growth that detrimentally leads to many problems including death of plants. Therefore, this study was performed to evaluate the salt resistance of plants, its effects on pollutants removal, and water circulation recovery. Eight different kinds of plants applicable to an LID facility were selected for the experiment, which were Bridal wreath (Spiraea japonica, S.J), Azalea (Rhododendron indicum, R.I), Dawn Redwood (Metasequoia glyptostroboides, M.G), Sweet flag (Acorus calamus A.C), Dwarf fan-shape columbine(Aquilegia flabellata, A.F), Pink (Dianthus chinensis, D.C), Pratia pedunculata (Pratia pedunculata, P.B) and Marigold (Tagetes patula, T.P). Woody plants such as S.P, R.I, and M.G appear to have less salt resistance compared to the other herbaceous plants. Specifically, M.G achieved the highest salt resistance among the other woody plants being followed by S.P, and R.I, respectively. For herbaceous plants, T.L and D.C have the higher salt resistances than that of A.C, P.B, and A.F, respectively. Regardless of the influence of salt to most of the plants, TN and TP were reduced more than 60% and the study suggests the M.G showed high pollutant removal efficiency and provided better water circulation by means of active photosynthesis and respiration due to higher growth.

Estimation of Kinetic Coefficient in Submerged Membrane Bioreactor for Biological Nutrient Removal (도시 하수의 생물학적 고도처리를 위한 분리막 공정의 개발 및 동역학적 계수 산정 연구)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as the anaerobic, the stabilization, the anoxic and the submerged membrane aerobic reactor with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 h, 34.1 days and 19.6 L/$m^2$/hr (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.653 kgVSS/kgBOD/d, 0.044 $mgNO_3$-N/mgVSS/d, 0.035 $mgNH_4$-N/mgVSS/d, 51.0 mgP/gVSS/d and 5.4 mgP/gVSS/d, respectively. The contents of nitrogen and phosphorus of biomass were 8.86% and 3.5% on an average.

Treatment of Dredging Suspended Solids Using Chitosan Coagulant (Chitosan 응집제를 이용한 준설토 부유물질 처리)

  • Lee, Jun-Ho;Yang, Seung-Ho;Shin, Yiung-Kyewn;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.834-846
    • /
    • 2011
  • The objective of this study is to development of IDFIS system, that are consisted of hydrocyclone, rapid flocculation and inclined settler with chitosan coagulant. As the results of Jar test, a chitosan optimum dosage of 40 mg/L for river sediment, and 5 mg/L for tunnelling wastewater sediment, which these conditions leaves of residual turbidity of less than 5 NTU. Because of the effectiveness of chitosan in removing turbidity was independent on pH, the operation of IDFIS system would be simple. The synthesized turbidity was made with clay particles, river sediment, river suspended sediment, and tunnelling wastewater sediment. Results indicate that the mean overall removal efficiency of turbidity, SS, COD and TP were 98%, 99%, 85% and 95%, respectively. Chitosan is very efficient in removing turbidity in the entire turbidity range examined. IDFIS system would have possibility with compact design, because of the increase of floc size favours the floc settling speed and reduces the settling time.

Change of dry matter and nutrients contents in plant bodies of LID and roadside (도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화)

  • Lee, YooKyung;Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.

Seasonal Performance of Constructed Wetland for Nonpoint Source Pollution Control (비점오염원 제어를 위한 인공습지의 계절변화에 따른 처리효율 평가)

  • Ham, Jong-Hwa;Han, Jung-Yoon;Kim, Hyung-Chul;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.471-480
    • /
    • 2006
  • The field scale experiment was performed to examine the performance of the constructed wetland for nonpoint source (NPS) pollution loading reduction. Four sets (each set of 0.88 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland systems. Water depth was maintained at 0.3-0.5 m and hydraulic retention time was managed to about 2-5 days; emergent plants were allowed to grow in the wetland. The wetland effluent concentrations of $BOD_5$, TSS, and T-N were higher in winter than in the growing season excepting the T-P, and effluent $BOD_5$ concentration was higher than influents in winter. Mass retention of T-N and T-P was stable throughout the year, whereas mass retention of $BOD_5$ and TSS was decreased in winter. $BOD_5$, TSS, T-N, and T-P performance of the experi-mental system was compared with the existing database (North American Treatment Wetland Database), and was within the range of general system performance. From the first-order analysis, T-P was virtually not temperature dependent, and $BOD_5$ and TSS were more temperature dependent than T-N. Overall, the wetland system was found to be an adequate alternative for treating polluted stream water with stable removal efficiency and recommended as a NPS control measures.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

Water Quality Modelling of Daechung Lake - Effect of Yongdam Dam (용담댐의 영향분석을 위한 대청호 수질모델링)

  • Seo, Dong-Il;Lee, Eun-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.737-751
    • /
    • 2002
  • Water quality in Daechung Lake was predicted for various discharge conditions of Yongdam dam. The same scenarios were applied as in the previous paper by the authors for Keum River water quality modeling. Effects in water quality due to changes in discharge conditions from Yongdam Dam were less distinct to the Daechung Lake than to the inflowing Keum River due to sink processes in the lake. For the minimum flow year, it is appropriate to maintain Yongdam dam discharge rate to 8.9 $m^3$/sec considering the current field conditions and future predictions of TN and TP concentrations of Yongdam dam. Effect of Yongdam dam discharge conditions to the Daechung Lake water quality were stronger for drier years. However it should be noted that the effects were dependent upon the water quality of Yongdam discharge at the same time. Therefore, water quality management effort should be emphasized before the discussion over the discharge volume of Yongdam dam. The input data sets for simulations in this study were formulated using the available data and assumptions based on authors experiences for the fields. Therefore, continued data collection effort will ensure the validity of this study.

The test-bed construction and water purification assessment of the eco-convergence type aerated string contacted oxidation system (생태융합형 접촉산화수로 Test-Bed 구축 및 정화효율 평가)

  • Choi, Sunhwa;Lee, Seung-Heon;Jang, Kyusang;Kim, Heungseop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.592-592
    • /
    • 2016
  • 국내에는 17,500여개의 농업용 저수지가 전국적으로 분포하고 있다. 국내 농업용 저수지는 대부분이 소규모이며, 연중 수량 변동이 심하고, 유역배율이 작아 태생적으로 수질오염에 취약한 구조로 되어 있다. 특히 농업용 저수지는 도시 근교나 농촌지역에 많이 위치하고 있어 유역 내 축산 농가나 미처리 생활하수에서 유래된 유기물 및 영양염류 유입에 의한 수질오염도가 높다. 저수지에 고농도로 유입되는 유기물, TN, TP를 처리하기 위하여 농어촌연구원과 수생태복원(주)에서는 공동으로 친환경 수처리시설인 생태융합형 접촉산화시스템을 개발하였다. 생태융합 접촉산화수로는 상부 식생과 수로 내의 섬유상 끈상 미생물 접촉재를 이용하여 오염수가 수로를 흐르면서 침전, 여과, 흡착, 산화, 흡수 등 물리학적, 화학적, 생물학적 원리를 이용하여 고농도의 유기물과 질소, 인을 제거하는 물리적, 생물학적 공정을 융복합 기술이다. 본 연구에서는 경기도 시흥시에 소재하고 있는 M 저수지에 현장 Test-bed를 구축하여 수질정화효율을 평가하였다. M 저수지는 유효저수지량이 약 23만톤에 해당하는 소규모 저수지로, 1941년도 준공된 아주 노후화된 저수지로 평균 수심이 2m 이하이고 연중 수질오염도가 높은 저수지이다. 매화저수지 수변에 설치된 생태융합형 접촉산화수로의 전체규모는 길이 8.6m, 폭 2m, 수심 2m에 해당하며, 끈상 미생물 메디아조 3개($2{\times}2{\times}6m^3$), 침전조 1개($2{\times}2{\times}2m^3$)로 구성되어 있다. 기타 부대 장치로는 끈상 메디아조에 산소공급을 위한 Air-mist(마이크로 버블 발생장치), 자동운전계기판, 유입펌프 등이 있다. 생태융합형 접촉산화수로의 처리 공정은 유입수${\rightarrow}$에어미스트${\rightarrow}$고속복합응집장치${\rightarrow}$융복합 산화조(3조)${\rightarrow}$침전조${\rightarrow}$방류로 구성되어 있다. 테스트 베드는 2015년 8월 말경에 구축 완료하였으며, 끈상 미생물 메디아조의 수질정화효율을 평가하기 위하여 9월부터 11월까지 총 7회 걸쳐 유입수와 유출수를 각각 조사하였다. 현장 측정항목인 수온, pH, EC, DO 등은 유입수 및 유출수간 큰 차이가 없었고, COD, SS, Chl-a, TP 등은 수처리시스템 초기 가동시에는 메디아에 미생물 부착율 저조로 유입수 및 유출수 수질농도에 큰 차이가 없었으나, 운영시간의 경과와 함께 메디아의 미생물 충진율이 높아짐에 따라 처리효율이 최대 SS 69.6%, Chl-a 89.3%, TP 89%까지 도달하는 것으로 나타났다. 생태융합 접촉산화수로는 부지 집약적인 컴팩트한 수처리 시설로서 현재 널리 이용되고 있는 인공습지를 대체할 수 있는 경제적인 시설로 판단된다.

  • PDF

Development of Domestic Rainwater Treatment System and its Application in the Field (소규모 빗물처리시설 개발 및 현장 적용성 평가 연구)

  • Pak, Gijung;Park, Minseung;Kim, Hwansuk;Lim, Yoonsoo;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • The increase of impervious area in cities caused the unbalanced water cycle system and the accumulated various contaminants, which make troubles as introducing into watershed. In Korea, most of rainfall in a year precipitate in a summer season. This indicate that non-point source pollution control should be more important in summer and careful rainfall reuse strategy is necessary. Accordingly, the aim of this study is to monitor the characteristics of rainfall contaminants harvested in roofs and to develop the rainfall treatment system which are designed to fit well in a typical domestic household including rain garden. The rain garden consists of peatmoss, gravel and san to specially treat the initial rainfall contaminants. For this purpose, lab scale experiments with synthetic rainfall had been conducted to optimize the removal efficiency of TN, TP and CODcr. After lab scale experiments, field scale rainfall treatment system installed as a pilot scale in a field. This system has been monitored during June to July in 2015 in four time rainfall events as investigating the function of time, rainfall, and pollutant concentrations. As results, high loading of pollutants were introduced to the rainfall treatment system and its removal efficiency is increased as increase of pollutant concentrations. Since it is common that the mega-size of rainfall treatment system is not attractive in urban area, small scale rainfall treatment system is promising to treat the non-point source contaminants from cities. In addition, this small scale rainfall treatment system could have a potential to water resue system in islands, which usually suffer the shortage of water.

The Nitrogen Behavior in the Continuous Inflow SBR according to Variations of Internal Recycling Rate (반송률 변화에 따른 연속 유입식 SBR 공정의 질소 거동)

  • Kim, Su-Yeon;Choi, Yong-Bum;Jo, You-Na;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • The BOD removal efficiency according to HRT of the continuous inflow SBR process was decreased from 92.1 ~ 96.0% at HRT 9 ~ 15 h to 86.9 ~ 90.7% at HRT 6 h, but a stable removal efficiency was shown up to HRT 6 h. The T-N removal rate was decreased to 80.1 ~ 87.9% at HRT 12 ~ 15 h, to 71.9 ~ 87.0% at HRT 9 h, and to 60.1 ~ 65.7% at HRT 6 h. As a result of the test of removing organic matter and nitrogen, the optimum HRT of the continuous inflow SBR reactor is determined as 9 h. The TCODcr removal efficiency was 88.4 ~ 96.0% and the TBOD removal efficiency was 92.1 ~ 98.1% as a result of examination of organic matter removal efficiency according to a change in the recycling rate (1 ~ 5Q) at HRT 9 h, suggesting that the a change in the recycling rate has a minimal effect on the removal of organic matter. The T-N removal efficiency was 70.3 ~ 80.4% at 1 ~ 2Q, 77.2 ~ 85.6% at 3Q and 61.5 ~ 80.8% at 4 ~ 5Q according to a change in the recycling rate. The TP removal efficiency was reduced to 75.0 ~ 84.6% at 1 ~ 4Q and to 63.3 ~ 72.4% at 5Q. This is presumably because the release and ingestion of phosphorus (P) by microorganisms is not performed smoothly at 5Q or more. Therefore, the optimum recycling rate for removing organic matter and nutrients was found to be 3Q.