• 제목/요약/키워드: TORCH

Search Result 417, Processing Time 0.024 seconds

Characteristics of Carbon Dioxide Destruction with a Plasma Torch and Effect of Additives (플라즈마 토치를 이용한 이산화탄소 분해특성과 첨가제의 영향)

  • Kim, Seong Cheon;Jeon, Jeong Hyeon;Chun, Young Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • To decompose carbon dioxide, which is a representative greenhouse gas, a plasma torch was designed and manufactured. To examine the characteristics of carbon dioxide decomposition via plasma discharge, a case wherein pure carbon dioxide was supplied and a case wherein methane and/or $TiCl_4$ were injected as additives were investigated and compared. The carbon dioxide and methane conversion rate, energy decomposition efficiency, produced gas concentration, carbon monoxide and hydrogen selectivity, carbon-black and $TiO_2$ were also investigated. The maximum carbon dioxide conversion rate was 28.9% when pure carbon dioxide was supplied; 44.6% when $TiCl_4$ was injected as am additive; and 100% percent when methane was injected as an additive. Therefore, this could be explained that the methane injection showed the highest carbon dioxide decomposition. Furthermore, the carbon-black and $TiO_2$ were compared with each commercial materials through XRD and SEM. It was found that the carbon-black that was produced in this study is similar for commercial materials. It was found that the $TiO_2$ that was produced in this study is suitable for photocatalyst and pigment because it has mixed anataze and rutile.

A Development of Technology for Low- and Intermediate-Level Radioactive Waste Treatment utilizing Induction heater and Plasma torch (플라즈마 및 전기유도가열을 이용한 중.저준위 방사물 처리기술 개발)

  • Moon, Young-Pyo;Cho, Chun-Hyung;Song, Myung-Jae;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.357-360
    • /
    • 1997
  • Currently, there is a need for the development of an advanced new technology for Low-and Intermediate-Level Radioactive Waste (LILW) treatment from nuclear power plants. The vitrification and melting technology by the use of the electrical equipments such as induction heater and plasma torch based furnace, along with off-gas treatment are considered as the most promising one of the LILW treatment technology since they can produce a very stable waste forms as well as considerably large volume reduction, which is a world-wide trend to apply for radioactive waste treatment. Korea Electric Power Research Institute(KEPRI) has already completed a feasibility study on LILW treatment and conceptual system design of a demonstration plant to be constructed. For this research, KEPRI selected a cold crucible melter(CCM) for the vitrification of combustible waste, and plasma torch based furnace(PT) for the melting of noncombustible waste, along with off-gas treatment for the volatile radioisotopes such as cesium.

  • PDF

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF

Thermal System Analysis to Optimize Torch Position in The Core Making Machine. (중자조형기의 토치위치 최적화를 위한 열계해석)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2002
  • The new core making method economizing the amount of core sand has been requested. The new method is that a core box is heated until it reaches reasonable temperature and then core sand with core binder is sprayed into the core box. Since inner temperature distribution have to be uniform in order to form uniform thickness of core, we studied inner temperature distribution of core box. First, we determined proper number of torches and optimized torch positions to minimize the average of absolute deviation(AVEDEV) of inner temperature. The results are as fellowed: 1. The number of torches that enables uniform inner temperature distribution about $300^{\circ}C$ is 25. 2. When $S_H$ and $S_V$ is 0.7, the torch positions are optimized and AVEDEV is 5.85.

Effect of Forced Cooling condition along with Welding on Welding Angular Distortion (용접 후면 강제냉각조건이 용접각변형에 미치는 영향)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2021-2026
    • /
    • 2013
  • In this study, the effect on the welding angle distortion was reviewed by carrying out a thermal elastic-plastic analysis while changing the cooling condition(width, length, and distance from weld torch to cooling torch) the back of the welding zone for the butt weld joint. The review results revealed that maximum 57% of reduction in the angle distortion was achieved when the distance between weld torch and cooling tip of 25mm, cooling length of 80mm, and cooling width of 30mm were maintained.

Numerical Modeling for Systematization of Line Heating Process

  • Shin, Jong-Gye;Kim, Won-Don;Lee, Jang-Hyun
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.41-54
    • /
    • 1996
  • Sculptured surface structures such as ship hulls are traditionally formed up to the required double curved shape by line heating method. The nature of the line heating process is a transient thermal process, followed by a thermo-elastic-plastic stress field. The permanant shape is dependent on many factors involved in the process, Among them are torch speed and path, supplied heat type and amount , and plate size. Thus, the work is essentially leaded by experts with lots of experiences. However, in order to effectively improve productivity through automation, each factor should be clearly examined how much it affects the final shape. This can not be done only by experiments, but can be achieved by a mechanics-based approach. In this paper, we propose a conceptual configuration for plate forming system, and then present simulations of the line heating process with numerical data in practices and suggest a computerized process of the line heating for practical applications. The modeling of heating torch, water cooling, and the plate to be formed is proposed for the finite element analysis after the mechanics of line heating is studied. Parametric studies are given and discussed for the effects of plate thickness, torch speed and initial curvature in forming a saddle typed surface.

  • PDF

Discharge Properties of Torch-Type Atmospheric Pressure Plasma and Its Local Disinfection of Microorganism (토치형 상압 플라즈마의 방전특성과 미생물의 국부 살균효과)

  • Son, Hyang-Ho;Lee, Won-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.835-839
    • /
    • 2011
  • The characteristics of torch-type atmospheric pressure plasma and its sterilization effects have been analyzed. The length of plasma flame was varied with the level of applied voltage and the mixture gases composed of argon and oxygen. The effect of plasma flame on the temperature increase of surface treated was limited to $43^{\circ}C$ as a maximum temperature under exposing time of 10 min. The sterilization for E. coli was strongly affected by the applied voltage, the oxygen ratio in the mixture gas and the treatment time. At a high concentration of ozone, the increase of treatment time under the direct contact with plasma flame yields to maximize the effect of the sterilization on E. coli.

Aerosol Particle Analysis Using Microwave Plasma Torch (마이크로파 플라즈마 토치를 이용한 에어로졸 입자 분석)

  • Kim, Hahk-Joon;Park, Ji-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.204-207
    • /
    • 2011
  • A particle counting system that can also provide sensitive, specific chemical information, while consuming very less power, occupying less space, and being inexpensive has been developed. This system uses a microwave plasma torch (MPT) as the excitation source for atomic emission spectrometry (AES). Emission from a single particle can be detected, and the wavelength at which the emission is observed indicates the elements present in the particle. It is believed that correlating the particle size and emission intensity will allow us to estimate the particle size in addition to abovementioned capabilities of the system. In the long term, this system can be made field-portable, so that it can be used in atmospheric aerosol monitoring applications, which require real-time detection and characterization of particles at low concentrations.

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Conversion of $CO_2$ and $CH_4$ to Syngas by Making Use of Microwave Plasma Torch (전자파 플라즈마 토치를 이용한 이산화탄소와 메탄의 Syngas 합성)

  • Dong Hun, Shin;Yong Cheol, Hong;Han Sup, Uhm
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.11a
    • /
    • pp.195-200
    • /
    • 2004
  • Carbon dioxide ($CO_2$) and methane (CH$_4$) are two major greenhouse Bases. $CO_2$is a stack gas of many industrial processes and the main product of the hydrocarbon combustion. There is recent research interest on the synthesis gas (syngas) formation from $CO_2$ and CH$_4$, via the following reaction: CH$_4$+$CO_2$longrightarrow 2H$_2$+$CO_2$, in order to reduce the greenhouse effects and to synthesize various chemicals, Preliminary experiments were conducted on the conversion of $CO_2$ and CH$_4$ to syngas by making use of a microwave plasma torch at atmospheric pressure. Conversion rates of $CO_2$and CH$_4$ to hydrogen (H$_2$), carbon monoxide (CO) and higher hydrocarbons were investigated using Gas Chromatography (GC) and Fourier Transform Infrared (FTIR). The experimental data indicate that the main products were H$_2$, CO and small amount of higher hydrocarbons, such as ethylene (C$_2$H$_4$).

  • PDF