• Title/Summary/Keyword: TOPOGRAPHICAL CHARACTERISTICS

Search Result 334, Processing Time 0.026 seconds

Characteristics of tidal current and tidal induced residual current in the channel between Geumo Island and An Island in the southern waters of Korea (금오도-안도 협수로 해역의 조류 및 조석잔차류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.214-227
    • /
    • 2021
  • The distribution of tidal current and tidal induced residual current, topographical eddies and tidal residual circulation in the waters surrounding the Geumo Island-An Island channel were identified through numerical model experiments and vorticity balance analysis. Tidal current flows southwest at flood and northeast at ebb along the channel. The maximum flow velocity was about 100-150 cm/s in neap and spring tide. During the flood current in the neap tide, clockwise small eddies were formed in the waters west of Sobu Island and southwest of Daebu Island, and a more grown eddy was formed in the southern waters of Geumo Island in the spring tide. A small eddy that existed in the western waters of Chosam Island during the ebb in neap tide appeared to be a more grown topographical eddy in the northeastern waters of Chosam Island in spring tide. Tidal ellipses were generally reciprocating and were almost straight in the channel. These topographical eddies are made of vorticity caused by coastal friction when tidal flow passes through the channel. They gradually grow in size as they are transported and accumulated at the end of the channel. When the current becomes stronger, the topographic eddies move, settle, spread to the outer sea and grow as a counterclockwise or clockwise tidal residual circulation depending on the surrounding terrain. In the waters surrounding the channel, there were counterclockwise small tidal residual circulations in the central part of the channel, clockwise from the northeast end of the channel to northwest inner bay of An Island, and clockwise and counterclockwise between Daebu Island and An Island. The circulation flow rate was up to 20-30 cm/s. In the future, it is necessary to conduct an experimental study to understand the growth process of the tidal residual circulation in more detail due to the convergence and divergence of seawater around the channel.

Validity of Wind Generation in Consideration of Topographical Characteristics of Korea (지형에 따른 예상풍력발전단지에 관한 고찰)

  • Moon, Chae-Joo;Jung, Kwen-Sung;Cheang, Eui-Heang;Park, Gui-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • This paper discussed the validity of wind force power generation in consideration of the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind velocity, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was higher at wind power plants installed in southwestern coastal areas where wind velocity was low than at those installed in mountain areas in Gangwondo where wind velocity was high. This suggests that the shape parameter of wind distribution is low due to the characteristics of mountain areas. and the standard deviation of wind velocity is large due to the effect of mountain winds, and therefore, actual generation is low in mountain areas although wind velocity is high.

  • PDF

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.

Estimation of Storage Capacity using Topographical Shape of Sand-bar and High Resolution Image in Urban Stream (도시하천의 지형태 자료와 영상정보를 이용한 수체적 시험평가)

  • Lee, Hyun Seok;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.445-450
    • /
    • 2008
  • Recently, environmental and ecological approaches is in progress in urban stream, especially the guarantee of instream flow becomes very important. In this paper, it is suggested that water volume estimation method utilizing the topographical shape data obtained by field investigation and satellite image to manage the urban stream efficiently. The data obtained at Gap River is the study area are analysed and those results are as belows. First, surveying to investigate topographic shape characteristics of urban stream is carried out. In details, the gradient characteristics from water surface to bottom in case of sand area and in case of grass area are 0.013 and 0.065 respectively. In conclusion, the gradient characteristic of grass area is five times bigger than that of sand area. Besides, IKONOS image is classified by spectrum analysis and Minimum Distance Method and the sand area extraction method by the generalization method as Median filter is suggested to calculate water volume. Finally, mapping process on the sand area extracted from the topographical shape field data in river and satellite images is carried out by the GIS spatial analysis. And on the assumption that the water level was 1m at that time when satellite image was taken, the water volume was $225,258m^3$. It is clarified that the effect of water volume improvement was about 10.5% in comparison with water volume that had no consideration on the gradient characteristics of sand-bar.

An Analysis for Goodness of Fit on Trigger Runoff of Flash Flood and Topographic Parameters Using GIS (GIS를 이용한 돌발홍수의 한계유량과 유역특성인자의 적합도 분석)

  • Oh, Myung-Jin;Yang, In-Tae;Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.87-95
    • /
    • 2006
  • Recently, local heavy rain for a short term is caused by unusual changing in the weather. This phenomenon has, several times, caused an extensive flash flood, casualties, and material damage. This study is aimed at calculating the characteristics of flash floods in streams. For this purpose, the analysis of topographical characteristics of water basin through applying GIS techniques will be conducted. The flash flood prediction model we used is made with GCIUH (geomorphoclimatic instantaneous unit hydrograph). The database is established by the use of GIS and by the extraction of streams and watersheds from DEM. The streams studied are included small, middle and large scale watersheds. For the first, for the establishment or criteria on the flash flood warning, peak discharge and trigger runoff must be decided. This study analyzed the degree or aptitude of topographical factors to the trigger runoff calculated by GCUH model.

  • PDF

Numerical Simulation of Local Scour in Front of Impermeable Submerged Breakwater Using 2-D Coupled Hydro-morphodynamic Model (2차원 연성모델을 적용한 불투과성 잠제 전면의 국부세굴 모의)

  • Lee, Woo-Dong;Lee, Jae-Cheol;Jin, Dong-Hwan;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.484-497
    • /
    • 2016
  • In order to understand the characteristics of the topography change in front of an impermeable breakwater, a coupled model for a two-way analysis of the existing LES-WASS-2D and newly developed morphodynamic model was suggested. A comparison to existing experimental results revealed that the results computed using the 2-D hydro-morphodynamic model were in good agreement with the experimental results for the wave form, pore water pressure in the seabed, and topographical change in front of a submerged breakwater. It was shown that the two-way model suggested in this study is applicable to a morphological change in the seabed around a submerged breakwater. Then, using the numerical results, the topographical changes in front of an impermeable submerged breakwater were examined in relation to partial standing waves. Moreover, the characteristics of the local scour depths in front of them are also discussed in relation to incident wave conditions, sediment qualities, and submerged breakwater shapes.

Analysis on the Characteristics of the Landslide in Maeri (II) - With a Special Reference on Cause of Landslide - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (II) - 발생원인(發生原因)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.243-251
    • /
    • 2005
  • This study was carried out to evaluate precipitation, geological and topographical factors from the landslide area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. The landslide was affected by geo-topographical factors. Talus which is infiltrated easily by runoff was widely distributed in the landslide area. Concave areas on back- and toe-slope were built up colluvial materials and weathered soils. The colluvial materials were consisted of less weathered pebbles and stones (diameter: 10~100 cm) which are easily infiltrated during rainfall events. Also the landslide was mainly affected by an ascending of ground water table which is low in summit and high in toe-slope due to geo-topographical characteristics of the landslide area. The most important reason of the landslide was a lacking of drainage system of ground water despite the high infiltration rates of ground water in talus area during rainfall events.

Wide-Viewing Characteristics of Self-Formed Micro-Domains in a Liquid Crystal Display with Dielectric Surface Gratings

  • Yoon, Tae-Young;Park, Jae-Hong;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.452-455
    • /
    • 2002
  • We demonstrate the wide-viewing characteristics of a twisted nematic liquid crystal display (LCD) with self-formed micro-domains through the topographical alignment and fringe field effects of dielectric surface gratings (DSG). The mutual optical compensation between micro-domains within each pixel eliminates the contrast inversion phenomenon of TN mode without complex surface treatments.

  • PDF

Changes of Drainage Paths Length and Characteristic Velocities in Accordance with Spatial Resolutions (공간해상도에 따른 배수경로길이 및 특성유속의 변화)

  • Choi, Yong-Joon;Kim, Joo-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.107-114
    • /
    • 2011
  • In this study, when interpreting leakage using the concept of geographical dispersion based on grid, to choose an appropriate spatial resolution, the statistical characteristics of drainage path length and the pattern of change of hydrodynamic parameters have been observed. Drainage path length has been calculated using an 8-direction algorithm from digital elevation model, from which the hydrodynamic parameters of the watershed were estimated. The scales of topographical map for this analysis are 1:5,000 and 1:25,000, appling grid sizes 5, 10, 15, 20 m and 20, 30, 50, 100, 150, 200 m, respectively. As results of this analysis, depending on the scale of stream networks, the statistical characteristics of drainage path length by spatial resolution and hydrodynamic parameters of the watershed have been changed. Based on the above results, when interpreting leakage using the concept of the geographical dispersion based on grid, in the case of 1:5,000 scale topographical map, a spatial resolution of 5 m will be better showing geographical and hydrodynamic characteristics to apply to the well developed stream network in basins, spatial resolution of 5~20 m to the less developed stream network in basins. And in the case of 1:25,000 scale topographical map, spatial resolution below 50 m is more desirable to show above two characteristics to apply to both cases.