• Title/Summary/Keyword: TOF method

Search Result 262, Processing Time 0.029 seconds

Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals - (단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 -)

  • Zachariah Michael R.;Lee Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.

Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.105-113
    • /
    • 2019
  • Although siderophore compounds are mainly biosynthesized as a response to iron deficiency in the environment, they also bind with other metals. A few studies have been conducted on the impact of heavy metals on the siderophore-mediated iron uptake by microbiome. Here, we investigated siderophore production by a variety of rhizosphere fungi under different concentrations of $Zn^{2+}$ ion. These strains were specifically isolated from the rhizosphere of Panax ginseng (Korean ginseng). The siderophore production of isolated fungi was investigated with chrome azurol S (CAS) assay liquid media amended with different concentrations of $Zn^{2+}$ (50 to $250{\mu}g/ml$). The percentage of siderophore units was quantified using the ultra-violet (UV) irradiation method. The results indicated that high concentrations of $Zn^{2+}$ ion increase the production of siderophore in iron-limited cultures. Maximum siderophore production by the fungal strains was detected at $Zn^{2+}$ ion concentration of $150{\mu}g/ml$ except for Mortierella sp., which had the highest siderophore production at $200{\mu}g/ml$. One potent siderophore-producing strain (Penicillium sp. JJHO) was strongly influenced by the presence of $Zn^{2+}$ ions and showed high identity to P. commune (100% using 18S-rRNA sequencing). The purified siderophores of the Penicillium sp. JJHO strain were chemically identified using UV, Fourier-transform infrared spectroscopy (FTIR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) spectra.

Acoustic Estimation of Phase Velocity of Closed-Cell Kelvin Structure based on Spectral Phase Analysis

  • Kim, Nohyu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.339-345
    • /
    • 2022
  • In this paper, the effect of porosity on the acoustic phase velocity of the 3D printed Kelvin closed-cell structure was investigated using the spectral phase analysis. Since Kelvin cells bring about the large amount of scattering, acoustic pulses in ultrasonic measurements undergoes a distortion of waveforms due to the dispersion effect. In order to take account on the dispersion, mathematical expressions for calculating the phase velocity of longitudinal waves propagating normal to the plane of the Kelvin structure are suggested by introducing a complex wave number based on Fourier transform. 3D Kelvin structure composed of identical unit-cells, a polyhedron of 14 faces with 6 quadrilateral and 8 hexagonal faces, was developed and fabricated by 3D CAD and 3D printer to represent the micro-structure of porous materials such as aluminum foam and cancellous bone. Total nine samples of 3D Kelvin structure with different porosity were made by changing the thickness of polyhedron. Ultrasonic pulse of 1MHz center frequency was applied to the Kelvin structures for the measurement of the phase velocity of ultrasound using the TOF(time-of-flight) and the phase spectral method. From the experimental results, it was found that the acoustic phase velocity decreased linearly with the porosity.

Cross-Sectional Image Reconstruction of Wooden Member by Considering Variation of Wave Velocities

  • Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.16-23
    • /
    • 2007
  • This study was performed as part of a research project aimed at developing an ultrasonic computed tomography (CT) system of wood for field application. In this reports, we investigate the variation of wave velocities on the cross section of real size wooden structural member to confirm the reason of image distortion on CT image of wood, and then proposed a new image reconstruction method by considering the velocity variation on wood cross section. First of all, the effect of wood anisotropy on ultrasonic velocities of wooden members was investigated. Based on the relationship between ultrasonic velocity and annual ring angle, which was obtained from test results of small clear specimens, ultrasonic velocities of each measuring angle were predicted. Next, they were compared with the ultrasonic velocities measured on five wood disks. There were very large differences between predicted and measured results, thought to be caused by the skewing effect of ultrasound and the presence of juvenile-wood. Based on these findings, a new method was proposed to reconstruct cross-sectional image of wood. By using this method, some distortions on reconstructed images could be removed, and defects were more easily and clearly detected. The minimum size of detectable defect was decreased remarkably, from 33 mm to 13 mm. However, the size of the detected defect was enlarged and the position somewhat shifted to the specimen surface on the CT images, which was also thought to be caused by the skewing effect of ultrasound. Additional research has been planned to solve these problems.

MR Angiography with Simultaneous Data Acquisition of Arteries and Veins(SAAV) Method and Artery-Vein Color Mapping in 0.3T MRI System (0.3T MRI 시스템에서의 동.정맥 동시 획득을 위한 자기공명 혈류 영상 기법(SAAV)과 동.정맥 color mapping)

  • 조종운;조지연;서성만;은충기;문치웅
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2003
  • The method of simultaneous data acquisition of arteries and veins(SAAV) was suggested to obtain MR angiography of arteries and veins at 0.3T low filed MRI system (Magfinder, AlLab. Korea). Two separated artery- and vein-images were put together using AVCM(Artery-Vein Color Mapping) algorithm and presented in the same image. In this study, artery- and vein-separated angiograms of volunteer's neck were obtained. Two dimensioal blood-enhanced images wre sequentially obtained using SAAV pulse sequence based on time-of-flight(TOF) method with flow compensation. Imaging parameters were TR/TE=70/12msec. FOV=230mm, slice thickness = 3mm, flip angle=90$^{\circ}$, matrix size=256${\times}$256${\times}$64mm. TSat TH/SPA=15/20mm, Ts_v=10msec and Ts_a=40ms. 3D MRA images were reconstructed using the maximum intensity projection(MIP) and the artery-vein color mapping(AVCM) algorithm. This study showed good possibility of clinical applications of MRA in 0.3T which provides valuable diagnostic information of clinical vascular diseases.

Identification of Jet fuel (JP-8) in Petroleum Hydrocarbon Contaminated Soil through the Qualitative Analysis of Antioxidants (유류 오염 토양 중 산화방지제 정성 분석을 통한 항공유(JP-8) 유종 판별)

  • Kim, Yonghun;Lee, Goontaek;Jang, Hanjeon;Jo, Yunju;Kim, Moongun;Choi, Jaeho;Kang, Jiyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.37-48
    • /
    • 2022
  • Accurate analysis of petroleum hydrocarbons in soil is an important prerequisite for proper source tracking of contamination. Identification of petroleum compounds is commonly carried out by peak pattern matching in gas chromatography. However, this method has several technical limitations, especially when the soils underwent biological, physical and chemical transformation. For instance, it is very difficult to distinguish jet fuel (JP-8) from kerosene because JP-8 is derivatized from secondary reaction between chemical agents (e.g. anti-oxidants, antifreezer and so on) and kerosene. In this study, an alternative method to separately analyze JP-8 and kerosene in the petroleum hydrocarbon contaminated soil was proposed. Qualitative analyses were performed for representative phenolic antioxidants [2,6-di-tert-butyl phenol (2,6-DTBP), 2,4-di-tert- butylphenol(2,4-DTBP), 2,6-di-tert-butyl-4-methyl phenol (2,6-DTBMP)] using a two dimensional gas chromatograph mass spectrometer (2D GC×GC-TOF-MS). This qualitative analysis of antioxidants in soil would be a useful complementary tool for the peak pattern matching method to identify JP-8 contamination in soil.

Changes of Protein Profiles in Cheonggukjang during the Fermentation Period (전통 청국장의 발효 기간 동안 변화하는 수용성 단백질 개요)

  • Santos, Ilyn;Sohn, Il-Young;Choi, Hyun-Soo;Park, Sun-Min;Ryu, Sung-Hee;Kwon, Dae-Young;Park, Cheon-Seok;Kim, Jeong-Hwan;Kim, Jong-Sang;Lim, Jin-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.438-446
    • /
    • 2007
  • The fermented soybean product, cheonggukjang, is favored by many people, partly due to its bio-functional ingredients. Since the fermentation process of cheonggukjang is mediated by enzymes, including proteases, produced by microbes, analysis of the proteome profile changes in cheonggukjang during fermentation would provide us with valuable information for fermentation optimization, as well as a better understanding of the formation mechanisms of the bio-functional substances. The soluble proteins from cheonggukjang were prepared by a phenol/chloroform extraction method, in order to remove interfering molecules for high resolution 2-D gel analysis. Proteomic analysis of the cheonggukjang different fermentation periods suggested that most of the soluble soy proteins were degraded into smaller forms within 20hr, and many microbial proteins, such as mucilage proteins, dominated the soluble protein fraction. The proteomic profile of cheonggukjang was very different from natto, in terms of the 2-D gel protein profile. Among the separated protein spots on the 2-D gels, 50 proteins from each gel were analyzed by MALDI-TOF MS and PMF for protein identification. Due to database limitations with regard to soy proteins and microbial proteins, identification of the changed proteins during fermentation was restricted to 9 proteins for cheonggukjang and 15 for natto. From de novo sequencing of the proteins by a tandem MS/MS, as well as by database searches using BLASTP, a limited number of proteins were identified with low reliability. However, the 2-D gel analysis of proteins, including protein preparation methods, remains a valuable tool to analyze complex mixtures of proteins entirely. Also, for intensive mass spectrometric analysis, it is also advisable to focus on a few of the interestingly changed proteins in cheonggukjang.

Surgical Treatment of Ventricular Tachycardia After Total Correction of Tetralogy of Fallot- Report of a case (TOF 완전교정술후 발생한 심실빈맥의 외과적 절제술 -치험1례보고-)

  • 장병철;김정택
    • Journal of Chest Surgery
    • /
    • v.29 no.6
    • /
    • pp.639-645
    • /
    • 1996
  • A 14-year-old male patient with previous surgical repair of tetralogy of Fallot was admitted with hemodynamically significant ventricular tachycardia (VT). On preoperative electrophysiologic study (EPS), the morphology of documented VT was RBBB of vertical axis with 320 msec cycle length. The endocardial mapping during VT delineated the origin of VT at right ventricular outflow tract (RVOT), where the patch was attached. The clinical VT had a clockwise reentry circuit around the patch with the earliest activation at the same site seen during the preoperative EPS. The previously placed right ventricular outflow patch and fibrous tissue were removed. During a postoperative EPS, it was no longer possible to induce the VT. Ventricular tachycardia following repair of tetralogy of Fallot seen in this patient was caused by a macro-reentry around the right ventricular outflow patch. We were able to ablate the VT with the aid of a detailed mapping of its epicardial activation sequence.

  • PDF

InSb 적외선 소자제작을 위한 $SiO_2$, $Si_3N_4$증착 온도에 따른 계면 특성 연구

  • Kim, Su-Jin;Park, Se-Hun;Lee, Jae-Yeol;Seok, Cheol-Gyun;Park, Jin-Seop;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.57-58
    • /
    • 2011
  • III-V족 화합물 반도체의 일종인 InSb는 77 K에서 0.23 eV의 작은 밴드 갭을 가지며 높은 전하 이동도를 가지고 있기 때문에 대기권에서 전자파 흡수가 일어나지 않는 3~5 ${\mu}m$범위의 장파장 적외선 감지가 가능하여 중적외선 감지 소자로 이용되고 있다. 하지만 InSb는 밴드 갭이 매우 작기 때문에, 소자 제작시 누설전류에 의한 소자 특성의 저하가 문제시 되고 있다. 또한 다른 화합물 반도체에 비해 녹는점이 낮고, 휘발성이 강한 5족 원소인 Sb의 승화로 기판의 화학양론적 조성비(stoichiometry)가 변하기 쉬워, 계면특성 저하의 원인이 된다. 따라서 우수한 특성을 가지는 적외선 소자의 구현을 위해서, 저온에서 계면 특성이 우수한 고품질의 절연막 증착 연구가 필수적이다. 본 연구에서는 InSb 기판 위에 $SiO_2$, $Si_3N_4$의 절연막 형성시 증착온도의 변화에 따른 계면 트랩 밀도를 분석하였다. $SiO_2$, $Si_3N_4$ 절연막은 플라즈마 화학 기상 증착법(PECVD)을 이용하여 n형 InSb 기판 위에 증착하였으며, 증착온도를 $120^{\circ}C$부터 $240^{\circ}C$까지 변화시켰다. Metal oxide semiconductor(MOS) 구조 제작을 통하여, 커패시턴스-전압(C-V)분석을 진행하였으며, 절연막과 InSb 사이의 계면 트랩 밀도를 Terman method를 이용하여 계산하였다[1]. 또한, $SiO_2$$Si_3N_4$의 XPS 분석과 TOF-SIMS 분석을 통하여 계면 트랩 밀도의 원인을 밝혀 보았다. $120{\sim}240^{\circ}C$ 온도 범위에서 계면 트랩 밀도는 $Si_3N_4$의 경우 $2.4{\sim}4.9{\times}10^{12}cm^{-2}eV^{-1}$, $SiO_2$의 경우 $7.1{\sim}7.3{\times}10^{11}cm^{-2}eV^{-1}$ 값을 나타냈고, 두 절연막 모두 증착 온도가 증가할수록 계면 트랩 밀도가 증가하는 경향을 보였다. 그러나 모든 샘플에서 $Si_3N_4$의 경우, flat band voltage가 음의 전압으로 이동한 반면, $SiO_2$의 경우, 양의 전압으로 이동하는 것을 확인할 수 있었다. 계면 트랩 밀도 증가의 원인을 확인하기 위해서, oxide를 $120^{\circ}C$, $240^{\circ}C$에서 증착시킨 샘플을 XPS 분석을 통하여 깊이에 따른 성분분석을 하였고, 그 결과, $240^{\circ}C$에서 증착된 샘플에서 계면에서 $In_2O_3$$Sb_2O_3$ 피크의 증가를 확인하였다. 이는 계면에서 oxide양이 증가함을 의미하며, 이렇게 생성된 oxide는 계면 트랩으로 작용하므로, 계면 특성을 저하시키는 원인으로 작용함을 알 수 있었다. Nitride 절연막을 증착시킨 샘플은 TOF-SIMS 분석을 통해, 계면에서의 성분 분석을 하였고, 그 결과, $240^{\circ}C$에서 증착된 샘플에서 In-N, Sb-N, Si-N 결합의 감소를 확인하였다. 이렇게 분해된 결합들의 dangling 결합이 늘어 계면 트랩으로 작용하므로, 계면 특성을 저하시키는 원인으로 작용함을 알 수 있었다. 최종적으로, 소자특성을 확인 하기 위하여 계면 트랩 밀도가 가장 낮게 측정된 $200^{\circ}C$ 조건에서 $SiO_2$ 절연막을 증착하여 InSb 적외선 소자를 제작하였다. 전류-전압(I-V) 분석 결과 -0.1 V에서 16 nA의 누설 전류 값을 보였으며, $2.6{\times}10^3{\Omega}cm^2$의 RoA(zero bias resistance area)를 얻을 수 있었다. 절연막 증착조건의 최적화를 통하여, InSb 적외선 소자의 특성이 개선됨을 확인할 수 있었다.

  • PDF

Classification and identification of organic aerosols in the atmosphere over Seoul using two dimensional gas chromatography-time of flight mass spectrometry (GC×GC/TOF-MS) data (GC×GC/TOF-MS를 이용한 서울 대기 중 유기 에어로졸의 분류 및 동정)

  • Jeon, So Hyeon;Lim, Hyung Bae;Choi, Na Rae;Lee, Ji Yi;Ahn, Yun Kyong;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.153-169
    • /
    • 2018
  • To identify a variety of organic compounds in the ambient aerosols, the two-dimensional gas chromatography-time of flight mass spectrometry (GCxGC) system (2DGC) has been applied. While 2DGC provides more peaks, the amount of the generated data becomes huge. A two-step approach has been proposed to efficiently interpret the organic aerosol analysis data. The two-dimensional 2DGC data were divided into 6 chemical groups depending on their volatility and polarity. Using these classification standards, all the peaks were subject to both qualitative and quantitative analyses and then classified into 8 classes. The aerosol samples collected in Seoul in summer 2013 and winter 2014 were used as the test case. It was found that some chemical classes such as furanone showed seasonal variation in the high polarity-volatile organic compounds (HP-VOC) group. Also, for some chemical classes, qualitative and quantitative analyses showed different trends. Limitations of the proposed method are discussed.