• Title/Summary/Keyword: TNFR1

Search Result 36, Processing Time 0.026 seconds

The Effects of Injinchunggan-tang(Yinchenqinggan-tang) on $TNF-\alpha$ signal transmission system in HepG2 cell (인진청간탕(茵蔯淸肝湯)이 HepG2 cell의 $TNF-\alpha$ 신호전달계에 미치는 영향(影響))

  • Kang Woo-Sung;Kim Young-Chul;Lee Jang-Hoon;Woo Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.28-45
    • /
    • 2004
  • Objectives : The main purpose of this study is to evaluate the effect of Injinchunggan-tang on $TNF-{\alpha}$ signal transmission system. Materials and Methods : We analyzed the following with quantitative RT-PCR method; the effect of Injinchunggan-tang on secretion of $TNF-\alpha$ mRNA/protein and stability, the effect on gene revelation that consists of signal transmission system (TRAIL, NIK, A20, TRADD, RAIDD, RIP TNFR-I, TNFR-II, TRAF1, TRAF2, FADD), the one on activation of p38, Erk1/2 MAPK and the rate of nuclear $NF-{\kappa}B/cytosolic\;NF-{\kappa}B$ in HepG2 cell. We also analyzed the inhibitory effect of Injinchunggan-tang on the apoptosis of HepG2 cell that $TNF-{\alpha}$ induces and the $NF-{\kappa}B$ restraint effected by transfection of $I{\kappa}B{\Delta}N$ through tryphan blue exclusion assay. Results : Injinchunggan-tang prohibits revelation of $TNF-{\alpha}$ mRNA in HepG2 cell and the creation of protein. However, it has no effect on the stability of $TNF-{\alpha}$ mRNA. While it did not have any effect on the generation of TRAIL, NIK, A20, TRADD, RAIDD and RIP genes, Injinchunggan-tang reduces the revelation of TNFR-I, TNFR-II, TRAF1, TRAF2 and FADD genes. It has been confirmed that Injinchunggan-tang restraints the revelation of $TNF-{\alpha}$ mRNA that is promoted by ethanol, acetaldehyde, lipopolysaccharide, in proportion to the treatment density and time. It activated $NF-{\kappa}B$ of HepG2 cell and promoted activation of $NF-{\kappa}B$ that is occurred by $TNF-{\alpha}$. It has been observed that the restraint effect against the $TNF-{\alpha}$ inducing apoptosis is lost when it is intercepted the function of $NF-{\kappa}B$ in HepG2 cell. Conclusion: It has been confirmed that Injinchunggan-tang has restraining effect against the revelation of $TNF-{\alpha}$ and mRNA that is constituent element of TNF-a signal transmission system. It also has been revealed that it restraints the activation of p38, Erk1/2 by $TNF-{\alpha}$. Through this prohibiting effect, it is inferred that it restraints signal transmission among various cells that are related to inflammation reaction. Meanwhile, Injinchunggan-tang protects liver cell from apoptosis that is caused by $TNF-{\alpha}$, by maintaining the activating function for $NF-{\kappa}B$.

  • PDF

Serum Biomarkers for Early Detection of Hepatocellular Carcinoma Associated with HCV Infection in Egyptian Patients

  • Zekri, Abdel-Rahman;Youssef, Amira Salah El-Din;Bakr, Yasser Mabrouk;Gabr, Reham Mohamed;El-Rouby, Mahmoud Nour El-Din;Hammad, Ibtisam;Ahmed, Entsar Abd El-Monaem;Marzouk, Hanan Abd El-Haleem;Nabil, Mohammed Mahmoud;Hamed, Hanan Abd El-Hafez;Aly, Yasser Hamada Ahmed;Zachariah, Khaled S.;Esmat, Gamal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1281-1287
    • /
    • 2015
  • Background: Early detection of hepatocellular carcinoma using serological markers with better sensitivity and specificity than alpha fetoprotein (AFP) is needed. Aims: The aim of this study was to evaluate the diagnostic value of serum sICAM-1, ${\beta}$-catenin, IL-8, proteasome and sTNFR-II in early detection of HCC. Materials and Methods: Serum levels of IL-8, sICAM-1, sTNFR-II, proteasome and ${\beta}$-catenin were measured by ELISA assay in 479 serum samples from 192 patients with HCC, 96 patients with liver cirrhosis (LC), 96 patients with chronic hepatitis C (CHC) and 95 healthy controls. Results: Serum levels of proteasome, sICAM-1, ${\beta}$-catenin and ${\alpha}FP$ were significantly elevated in HCC group compared to other groups (P-value<0.001), where serum level of IL-8 was significantly elevated in the LC and HCC groups compared to CHC and control groups (P-value <0.001), while no significant difference was noticed in patients with HCC and LC (P-value=0.09). Serum level of sTNFR-II was significantly elevated in patients with LC compared to HCC, CHC and control groups (P-value <0.001); also it was significantly higher in HCC compared to CHC and control groups (P-value <0.001). ROC curve analysis of the studied markers between HCC and other groups revealed that the serum level of proteasome had sensitivity of 75.9% and specificity of 73.4% at a cut-off value of $0.32{\mu}g/ml$ with AUC 0.803 sICAM-1 at cut off value of 778ng/ml, the sensitivity was 75.8% and the specificity was 71.8% with AUC 0.776. ${\beta}$-catenin had sensitivity and specificity of 70% and 68.6% respectively at a cut off value of 8.75ng/ml with an AUC of 0.729. sTNFR-II showed sensitivity of 86.3% and specificity of 51.8% at a cut off value of 6239.5pg/ml with an AUC of 0.722. IL-8 had sensitivity of 70.4% and specificity of 52.3% at a cut off value of 51.5pg/ml with AUC 0.631. Conclusions: Our data supported the role of proteasome, sICAM-1, sTNFR-II and ${\beta}$-catenin in early detection of HCC. Also, using this panel of serological markers in combination with ${\alpha}FP$ may offer improved diagnostic performance over ${\alpha}FP$ alone in the early detection of HCC.

Overexpression and Biological Characterization of the Death Domain Complex between TRADD and FADD

  • Hwang, Eun Young;Jeong, Mi Suk;Sung, Minkyung;Jang, Se Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1089-1095
    • /
    • 2013
  • The tumor necrosis factor-receptor 1 (TNFR1)-associated death domain protein (TRADD) contains an N-terminal TRAF binding domain and a C-terminal death domain. TRADD is known to interact directly with TNF receptor 2 (TNFR2) and the Fas-associated death domain protein (FADD), which are signal transducers that activate NF-${\kappa}B$ and induce apoptosis, respectively. To date, there has been no structural information on the TRADD and FADD death domain (DDs) complex. In this study, the death domains of TRADD and FADD were co-expressed and purified from Escherichia coli for structural characterization. We found that human TRADD (hTRADD) interacted strongly with mouse FADD (mFADD) via their DDs and interacted weakly with human FADD (hFADD)-DD. Moreover, the structures of the TRADD-DD:FADD-DD complexes were separately modeled from predicted structures in the protein data bank (PDB). The results of this study will have important applications in human diseases such as cancer, AIDS, degenerative and autoimmune diseases, and infectious diseases.

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

Characterization of EST Gene in the Bovine Corpus Luteum during the Estrous Cycle

  • Lee, Eunyoung;Kim, Sang Hwan;Kim, Byung-Gak;Yoon, Jong Taek
    • Development and Reproduction
    • /
    • v.19 no.4
    • /
    • pp.227-234
    • /
    • 2015
  • The objective of this study was to investigate the expression of bovine luteum expressed sequence tags (ESTs), vascular endothelial growth factor (VEGF), and tumor necrosis factor receptor 1 (TNFR1) and the presence of functional ESTs in the bovine corpus luteum (CL) during different stages of the estrus cycle. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed a difference in the expression of ESTs during the CL stage. Concentration of ESTs in the CL tissue increased significantly from the mid-luteal stage and decreased thereafter. RT-PCR analysis showed higher levels of the EST genes in the CL of the mid-luteal stage than in other stages, and the same level of expression of VEGF. Immunohistochemistry analysis of the tissue from CL formation to regression showed low cytosol and aggregation of the nucleus. And activity caspase 3 (apoptosis detector) was most strongly detected in the CL1 stage of bovine. During the estrous cycle, the cytosol was magnified and differentiation of the nucleus was clearly manifested. The ESTs affected the CL, and the relationship between VEGF and TNFR1 played a pivotal role for CL development and activation, dependent on the stage of CL. These results suggest local production of ESTs, the presence of functional ESTs in the bovine CL, and that ESTs play a role in regulating the function of cell death in bovine CL.

Use of Tumor Necrosis Factor Receptor (TNFR)-Knockout Mice to Probe the Mechanism of Chemically-Induced Asthma

  • Karol, Meryl H.;Matheson, Joanna M.;Lange, Robert W.;Lemus, Ranulfo;Luster, Michael I.
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.305-307
    • /
    • 2001
  • Toluene diisocyanate (TDI) is widely used in the manufacture of polyurethanes and is a recognized cause of occupational asthma. Although extensive investigations have been undertaken, the molecular mechanism(s) of the disease is still unclear. We hypothesized that inflammatory cytokines are required during both the sensitization and elicitation phases of the disease and have utilized TNF-R knock-out (KO) mice to address the hypothesis. Black C57 TNFR knock-out mice were exposed to TDI by sc injection and challenged by inhalation of 100 ppb TDI vapor. Control animals included: wild type C57 animals, sham-exposed animals that were challenged with TDI, and animals that were injected with anti-TNF antibodies prior to sensitization and again prior to challenge. Total IgE was increased in the knock-out animals compared with the wild type sensitized and challenged animals whereas TDI-specific IgG antibodies did not differ significantly in KO and wild type animals. There was less inflammation in the nares and trachea in KO animals compared with the wild type animals exposed to TD1 as well as less goblet cell hyperplasia and epithelial damage. Airway reactivity was assessed in animals treated with anti-TNF$\alpha$ antibody and found to be substantially reduced compared with that in sensitized and challenged animals. These results indicate that TNF$\alpha$ plays a role in the immunologic and physiologic responses and in airways inflammation in this animal model and suggests a role for TNF in occupational asthma due to TDI.

  • PDF

Natural TACE (TNF-$\alpha$ Convertase) Inhibitor, Gelastatin Hydroxamate: Biological Evaluation and Target Validation

  • Chun, Tae-Gyu;Lee, Jin-Ha;An, Mi-Hyun;Park, Song-Kyu;Lee, Hee-Yeon;Han, Gyoon-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.173.1-173.1
    • /
    • 2003
  • One of attractive target for Rheumatoid Arthritis (RA) therapy is the cytokine, tumor necrosis factor-alpha (TNF-$\alpha$), which has been shown to be overproduced in the joint of RA patients. The clinical success of anti- TNFR biologics has validated TNF-$\alpha$ as a drug discovery target. Thus, inhibiting of formation of TNF-$\alpha$ has been emerged to an intriguing approach for RA therapy. TNF-$\alpha$ is processed from its membrane bound precursor by the metalloprotease TNF-$\alpha$ converting enzyme (TACE), Here, biological evaluation, mode of action of natural TACE inhibitor, Gelastatin hydroxamate, are addressed. (omitted)

  • PDF

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis

  • Zhang, Yuan-Yuan;Liu, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7069-7074
    • /
    • 2013
  • Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer research. Necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinases 1 and 3 (RIP1 and RIP3), mixed lineage kinase domain-like (MLKL), and phosphoglycerate mutase 5 (PGAM5) and can be specifically inhibited by necrostatins. Not only does necroptosis serve as a backup cell death program when apoptosis is inhibited, but it is now recognized to play a pivotal role in regulating various physiological processes and the pathogenesis of a variety of human diseases such as ischemic brain injury, immune system disorders and cancer. The control of necroptosis by various defined trigger factors and signaling pathways now offers the opportunity to target this cellular process for therapeutic purposes. The purpose of this paper is to review current findings concerning the connections between various trigger factors and the RIP1/RIP3 signaling pathway as it relates to necroptosis.

DED Interaction of FADD and Caspase-8 in the Induction of Apoptotic Cell Death

  • Park, Young-Hoon;Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1034-1040
    • /
    • 2022
  • Fas-associated death domain (FADD) is an adapter molecule that bridges the interaction between receptor-interacting protein 1 (RIP1) and aspartate-specific cysteine protease-8 (caspase-8). As the primary mediator of apoptotic cell death, caspase-8 has two N-terminal death-effector domains (DEDs) and it interacts with other proteins in the DED subfamily through several conserved residues. In the tumor necrosis receptor-1 (TNFR-1)-dependent signaling pathway, apoptosis is triggered by the caspase-8/FADD complex by stimulating receptor internalization. However, the molecular mechanism of complex formation by the DED proteins remains poorly understood. Here, we found that direct DED-DED interaction between FADD and caspase-8 and the structure-based mutations (Y8D/I128A, E12A/I128A, E12R/I128A, K39A/I128A, K39D/I128A, F122A/I128A, and L123A/I128A) of caspase-8 disrupted formation of the stable DED complex with FADD. Moreover, the monomeric crystal structure of the caspase-8 DEDs (F122A/I128A) was solved at 1.7 Å. This study will provide new insight into the interaction mechanism and structural characteristics between FADD and caspase-8 DED subfamily proteins.