• Title/Summary/Keyword: TNF-β

Search Result 436, Processing Time 0.022 seconds

Hibiscus hamabo Exerts Anti-inflammatory Effects in Lipopolysaccharide-induced RAW 264.7 Cells

  • Seo-Hyun Yun;Ji-Eun Yang;Jong-Yun Im;So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park;Ji-Sun Mun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.55-55
    • /
    • 2021
  • Hibiscus hamabo is a deciduous shrub that grows around salt marshes and is considered a semi-mangrove plant found in Asia. There are no studies on the biological activity of H. hamabo except for studies on the anthocyanin content. We investigated the anti-inflammatory effects of H. hamabo extract (HHE) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. As nuclear factor-kappa B (NF-kB) induced by LPS moves into the nucleus, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines are promoted and the inflammatory reaction begins. The nitric oxide (NO) production decreased by the treatment of HHE. Moreover, mRNA levels of inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, were significantly suppressed by HHE. Similarly, the expressions of iNOS and COX-2 were also decreased. The phosphorylation of p65, a subunit of NF-κB, was suppressed by HHE. As a result, HHE can be used as an effective natural material for the anti-inflammatory agent.

  • PDF

Immune-Enhancing Activity of Staphylea bumalda Leave (고추나무 잎의 면역증진 활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.86-86
    • /
    • 2020
  • The leaves of Staphylea bumalda (S. bumalda) as a deciduous tree distributed in Korea, China and Japan are used to treat respiratory diseases or inflammation. However, there is no scientific research on the immune-enhancing activity of S. bumalda leaves. Thus, in this study, we investigated the effect of water extracts from S. bumalda leaves (SBL) on the macrophage activity using mouse macrophage cells, RAW264.7. SBL increased production of immunomodulators such as NO, iNOS, IL-1β, IL-6, TNF-α and MCP-1 in RAW264.7 cells and activated phagocytic activity of RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked SBL-mediated production of immunomodulators in RAW264.7 cells. In addition, SBL-mediated production of immunomodulators was attenuated by JNK inhibition in RAW264.7 cells. SBL increased JNK phosphorylation, while Inhibition of TLR2 and TLR4 blocked SBL-mediated JNK phosphorylation in RAW264.7 cells. These results are thought to be evidence that SBL activates JNK through stimulation of TLR2 and TLR4 in macrophage to induce the production of immunomodulators. In LPS-stimulated RAW264.7 cells, SBL inhibited over-production of immunomodulators. Summarizing the results, SBL showed immunostimulatory activity under normal conditions and immunosuppressive activity under LPS-induced excessive immune response conditions.

  • PDF

Sweroside plays a role in mitigating high glucose-induced damage in human renal tubular epithelial HK-2 cells by regulating the SIRT1/NF-κB signaling pathway

  • Xiaodan Ma;Zhixin Guo;Wenhua Zhao;Li Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.533-540
    • /
    • 2023
  • Sweroside is a natural monoterpene derived from Swertia pseudochinensis Hara. Recently, studies have shown that sweroside exhibits a variety of biological activities, such as anti-inflammatory, antioxidant, and hypoglycemic effects. However, its role and mechanisms in high glucose (HG)-induced renal injury remain unclear. Herein, we established a renal injury model in vitro by inducing human renal tubular epithelial cell (HK-2 cells) injury by HG. Then, the effects of sweroside on HK-2 cell activity, inflammation, reactive oxygen species (ROS) production, and epithelial mesenchymal transition (EMT) were observed. As a result, sweroside treatment ameliorated the viability, inhibited the secretion of inflammatory cytokines (TNF-α, IL-1β, and VCAM-1), reduced the generation of ROS, and inhibited EMT in HK-2 cells. Moreover, the protein expression of SIRT1 was increased and the acetylation of p65 NF-kB was decreased in HK-2 cells with sweroside treatment. More importantly, EX527, an inhibitor of SIRT1, that inactivated SIRT1, abolished the improvement effects of sweroside on HK-2 cells. Our findings suggested that sweroside may mitigate HG-caused injury in HK-2 cells by promoting SIRT1-mediated deacetylation of p65 NF-kB.

Immunomodulatory effects of six Acetobacter pasteurianus strains in RAW-Blue macrophage

  • Sun Hee Kim;Woo Soo Jeong;So-Young Kim;Soo-Hwan Yeo
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.65-77
    • /
    • 2023
  • In this study, we investigated the immunological properties of six strains of Acetobacter pasteurianus through nuclear factor-kappa B/activator protein-1 (NF-κB/AP-1) transcription factor activation and nitric oxide (NO) and cytokine production in macrophages. We found that the six A. pasteurianus strains had no significant inhibitory effect on the cell viability of RAW-BlueTM cells at the concentration of (25, 50, 100 CFU/macrophage). The production of NO and cytokines (TNF-α, IL-1β, and IL-6) showed different abilities of immune activation for each strain, and it was 0.7 to 0.9 times higher than that of the LPS (100 ng/mL, v/v) positive control and 7 to 8 times superior to that of the negative control group. To explore the underlying mechanism, we evaluated the mRNA expression of pro-inflammatory genes. Consequently, we found that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression including genes expression of cytokines were elevated by the six A. pasteurianus treatment. These results suggested that the six strains of A. pasteurianus have an excellent industrial application value as a functional material for the purpose of enhancing immune function.

Anti-Inflammatory Effects of Hydroethanolic Extract from Ehretia asperula on Lipopolysaccharide-Stimulated RAW264.7 Macrophages

  • Bao Le;Vo Thi Kim Hong;Seung Hwan Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1340-1347
    • /
    • 2024
  • Ehretia asperula is a medicinal plant of the Ehretiaceae family used to treat inflammatory disorders, but the underlying mechanisms are not fully elucidated. The anti-inflammatory potential was determined based on enzyme cyclooxygenase-2 (COX-2) inhibition, which showed that the 95% ethanol extract (95ECH) was most effective with a half-maximal inhibitory concentration (IC50) value of 34.09 ㎍/mL. The effects of 95ECH on phagocytosis, NO production, gene, and protein expression of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) and inducible nitric oxide synthase/ nitric oxide (iNOS/NO) pathways in lipopolysaccharide (LPS)-induced RAW264.7 cells were examined using the neutral red uptake and Griess assays, reverse-transcriptase polymerase chain reactions (RT-PCR), and enzyme-linked immunosorbent assays (ELISA). The results showed that 95ECH suppressed phagocytosis and the NO production in activated macrophage cells (p < 0.01). Conversely, 95ECH regulated the expression levels of mRNAs for cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) as well as the corresponding proteins. In addition, PGE2 production was inhibited in a dose-dependent manner by 95ECH, and the expression of iNOS and COX-2 mRNAs was decreased in activated macrophage cells, as expected. Therefore, 95ECH from E. asperula leaves contains potentially valuable compounds for use in inflammation management.

Synbiotic of Pediococcus acidilactici and Inulin Ameliorates Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis in Mice

  • Mingzhu Wang;Longzhou Zhang;Huiyan Piao;Yuanming Jin;Chengdu Cui;Xin Jin;Lianhua Cui;Chunri Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.689-699
    • /
    • 2024
  • Colitis is a major gastrointestinal disease that threatens human health. In this study, a synbiotic composed of inulin and Pediococcus acidilactici (P. acidilactici) was investigated for its ability to alleviate dextran sulfate sodium (DSS)-induced colitis. The results revealed that the synbiotic, composed of inulin and P. acidilactici, attenuated the body weight loss and disease activity index (DAI) score in mice with DSS-mediated colitis. Determination of biochemical indicators found that the synbiotic increased anti-oxidation and alleviated inflammation in mice. Additionally, histopathological examination revealed that colonic goblet cell loss and severe mucosal damage in the model group were significantly reversed by the combination of inulin and P. acidilactici. Moreover, synbiotic treatment significantly reduced the levels of IL-1β, TNF-α, and IL-6 in the serum of mice. Thus, a synbiotic composed of inulin and P. acidilactici has preventive and therapeutic effects on DSS-induced colitis in mice.

The Beneficial Effects of Extract of Pinus densiflora Needles on Skin Health (솔잎추출물의 피부건강 개선효과)

  • Choi, Jieun;Kim, Woong;Park, Jaeyoung;Cheong, Hyeonsook
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.208-217
    • /
    • 2016
  • Pinus densiflora Sieb. et Zucc. (P. densiflora) contains several phenolic compounds that exhibit biological activities, such as antimicrobial, antioxidant, and antihypertensive effects. However, the anti-inflammatory effect of P. densiflora on skin has rarely been reported. Malassezia furfur (M. furfur) is a commensal microbe that induces skin inflammation and is associated with several chronic disorders, such as dandruff, seborrheic dermatitis, papillomatosis, and sepsis. The aim of our study was to identify the anti-inflammatory effects of P. densiflora needle extracts on skin health subjected to M. furfur-induced inflammation. The methanolic extract of the pine needles was partitioned into n-hexane, EtOAc, n-BuOH, and water layers. We measured the anti-inflammatory effects (in macrophages) as well as the antioxidant, antifungal, and tyrosinase inhibitory activity of each of these layers. The antioxidant activity of the individual layers was in the order EtOAc layer > n-BuOH layer > water layer. Only the n-BuOH, EtOAc, and n-hexane layers showed antifungal activity. Additionally, all the layers possessed tyrosinase inhibition activity similar to that of ascorbic acid, which is used as a commercial control. The EtOAc layer was not cytotoxic toward the RAW 264.7 cell line. Interleukin 1 beta and tumor necrosis factor (TNF)-α expression levels in M. furfur-stimulated RAW 264.7 cells treated with the EtOAc layer were decreased markedly compared to those in cells treated with the other layers. Taken together, we believe that the needle extracts of P. densiflora have potential application as alternative anti-inflammatory agents or cosmetic material for skin health improvement.

Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells (인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향)

  • Han, Min-Ho;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • The tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its unique ability to induce cancer cell death having only negligible effects on normal cells. However, many cancer cells tend to be resistant to TRAIL. In this study, we investigated the effects and molecular mechanisms of sodium butyrate (SB), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in 5637 human bladder cancer cells. Our results indicated that co-treatment with SB and TRAIL significantly increased the apoptosis induction, compared with treatment with either agent alone. Co-treatment with SB and TRAIL effectively increased the cell-surface expression of death receptor (DR) 5, but not DR4, which was associated with the inhibition of cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP). Furthermore, the activation of caspases (caspase-3, -8 and -9) and degradation of poly(ADP-ribose) were markedly increased in 5637 cells co-treated with SB and TRAIL; however, the synergistic effect was perfectly attenuated by caspase inhibitors. We also found that combined treatment with SB and TRAIL effectively induced the expression of pro-apoptotic Bax, cytosolic cytochrome c and cleave Bid to truncated Bid (tBid), along with down-regulation of anti-apoptotic Bcl-xL expression. These results collectively suggest that a combined regimen of SB plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating TRAIL-resistant bladder cancer cells.

Effects of β-Glucan from Paenibacillus polymyxa and L-theanine on Growth Performance and Immunomodulation in Weanling Piglets

  • Hwang, Y.H.;Park, B.K.;Lim, J.H.;Kim, M.S.;Song, I.B.;Park, S.C.;Jung, H.K.;Hong, J.H.;Yun, H.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1753-1759
    • /
    • 2008
  • Forty weanling piglets ($5.6{\pm}0.5kg$ and 26 to 30 d of age) were used in a 28-d experiment to determine the effects of ${\beta}$-glucan from Paenibacillus polymyxa and L-theanine on growth performance. Piglets were randomly allotted to four groups (n = 10, 2 animals per pen) provided with the basal feed (control), ${\beta}$-glucan 400 mg/kg feed, L-theanine 80 mg/kg feed or ${\beta}$-glucan plus l-theanine (combination of the above-mentioned concentrations). Body weight and feed consumption were recorded during four weeks. Subsequently, the immunomodulatory effects of ${\beta}$-glucan and L-theanine were investigated for lipopolysaccharide (LPS)-induced cytokine production in vitro and in vivo on day 28. Although there were no significant differences in the growth performances among the treatment groups, ${\beta}$-glucan plus L-theanine had 5.6% greater ADG (p = 0.074) on day 21 to 28. ${\beta}$-Glucan alone or plus L-theanine increased interleukin (IL)-10 levels and decreased interferon (IFN)-$\gamma$ and tumor necrosis factor (TNF)-${\alpha}$ levels in cultured medium by LPS treatment (p<0.05). Plasma IL-10 levels were also increased in the piglets fed with ${\beta}$-glucan alone or plus L-theanine after LPS challenge ($25{\mu}g/kg$, i.p.), whereas plasma IFN-$\gamma$ and TNF-${\alpha}$ levels were decreased (p<0.05). The levels of IFN$\gamma$ in piglets fed with ${\beta}$-glucan plus L-theanine showed the greatest inhibition after LPS challenges. In conclusion, treatment of ${\beta}$-glucan alone or plus L-theanine might lessen inflammatory responses against Gram-negative bacterial infection via the inhibition of pro-inflammatory cytokine production and enhancement of anti-inflammatory cytokine production. Further studies are needed to determine an optimal concentration of ${\beta}$-glucan and L-theanine for improved growth performance.

Agrobacterium sp.-derived β-1,3-glucan enhances natural killer cell activity in healthy adults: a randomized, double-blind, placebo-controlled, parallel-group study

  • Lee, Yeon Joo;Paik, Doo-Jin;Kwon, Dae Young;Yang, Hye Jeong;Park, Yongsoon
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The present study investigated the hypothesis that a highly pure linear ${\beta}$-1,3-glucan produced by Agrobacterium sp. R259 enhances human natural killer (NK) cell activity and suppresses pro-inflammatory cytokines. SUBJECTS/METHODS: In an eight-week, double-blind, randomized, placebo-controlled clinical trial, 83 healthy adults with white blood cell counts of $4,000-8,000cells/{\mu}L$ were participated and randomly assigned to take two capsules per day containing either 350 mg ${\beta}$-1,3-glucan or placebo. Six participants withdrew their study consent or were excluded due to NK cell activity levels outside the normal range. NK cell activity and serum levels of immunoglobulin G (IgG) and cytokines, such as interferon (IFN)-${\gamma}$, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12 and tumor necrosis factor (TNF)-${\alpha}$ were measured. RESULTS: NK cell activity and the serum levels of IL-10 were significantly higher from baseline to week 8 in the ${\beta}$-glucan group compared with the placebo group (P = 0.048, P = 0.029). Consumption of ${\beta}$-1,3-glucan also significantly increased NK cell activity compared with placebo after adjusting for smoking and stress status (P = 0.009). In particular, the effect of ${\beta}$-1,3-glucan on NK cell activity was greater in participants with severe stress than in those experiencing mild stress. However, the administration ${\beta}$-1,3-glucan did not significantly modulate the levels of IFN-${\gamma}$, IL-2, IL-4, IL-6, IL-12, TNF-${\alpha}$ and IgG compared with the placebo. CONCLUSION: The results showed that supplementation with bacterial ${\beta}$-1,3-glucan significantly increased NK cell activity without causing any adverse effects. Additionally, the beneficial effect of ${\beta}$-1,3-glucan on NK cell activity was greater in participants experiencing severe stress.